
Autonomous Robots (2023) 47:1537–1558
https://doi.org/10.1007/s10514-023-10148-y

Multi-robot geometric task-and-motion planning for collaborative
manipulation tasks

Hejia Zhang1 · Shao-Hung Chan1 · Jie Zhong1 · Jiaoyang Li2 · Peter Kolapo3 · Sven Koenig1 · Zach Agioutantis3 ·
Steven Schafrik3 · Stefanos Nikolaidis1

Received: 4 March 2023 / Accepted: 26 September 2023 / Published online: 30 October 2023
© The Author(s) 2023

Abstract
We address multi-robot geometric task-and-motion planning (MR-GTAMP) problems in synchronous, monotone setups. The
goal of the MR-GTAMP problem is to move objects with multiple robots to goal regions in the presence of other movable
objects. We focus on collaborative manipulation tasks where the robots have to adopt intelligent collaboration strategies to be
successful and effective, i.e., decide which robot should move which objects to which positions, and perform collaborative
actions, such as handovers. To endow robots with these collaboration capabilities, we propose to first collect occlusion and
reachability information for each robot by calling motion-planning algorithms. We then propose a method that uses the
collected information to build a graph structure which captures the precedence of the manipulations of different objects and
supports the implementation of amixed-integer program to guide the search for highly effective collaborative task-and-motion
plans. The search process for collaborative task-and-motion plans is based on aMonte-Carlo Tree Search (MCTS) exploration
strategy to achieve exploration-exploitation balance. We evaluate our framework in two challenging MR-GTAMP domains
and show that it outperforms two state-of-the-art baselines with respect to the planning time, the resulting plan length and
the number of objects moved. We also show that our framework can be applied to underground mining operations where a
robotic arm needs to coordinate with an autonomous roof bolter. We demonstrate plan execution in two roof-bolting scenarios
both in simulation and on robots.

Keywords Task-and-motion planning · Multi-robot collaboration · Collaborative manipulation · Mining robotics

B Hejia Zhang
hejiazha@usc.edu

Shao-Hung Chan
shaohung@usc.edu

Jie Zhong
jzhong54@usc.edu

Jiaoyang Li
jiaoyangli@cmu.edu

Peter Kolapo
peter.kolapo@uky.edu

Sven Koenig
skoenig@usc.edu

Zach Agioutantis
zach.agioutantis@uky.edu

Steven Schafrik
steven.schafrik@uky.edu

Stefanos Nikolaidis
nikolaid@usc.edu

1 Introduction

Task-and-motion planning (TAMP) is the problem of com-
bining task and motion planning to divide an objective, such
as assembling a table, into a series of robot-executablemotion
trajectories (Garrett et al. 2021). Task planning is used to
generate a sequence of discrete actions, such as picking up
a screwdriver and driving a screw, while motion planning
is used to compute the actual trajectories the robot should
execute.

Geometric task-and-motion planning (GTAMP) is an
important subclass of TAMP where the robot has to move

1 Thomas Lord Department of Computer Science, University of
Southern California, Los Angeles, USA

2 The Robotics Institute, Carnegie Mellon University,
Pittsburgh, USA

3 Department of Mining Engineering, University of Kentucky,
Lexington, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-023-10148-y&domain=pdf

1538 Autonomous Robots (2023) 47:1537–1558

several objects to regions in the presence of other movable
objects (Kim et al. 2019). GTAMP has been addressed effi-
ciently in single-robot domains (Kim et al. 2019; Kim and
Shimanuki 2020; Kim et al. 2022). We focus on multi-robot
geometric task-and-motion planning (MR-GTAMP), where
several robots have to collaboratively move several objects
to regions in the presence of other movable obstacles.

MR-GTAMP naturally arises in many multi-robot manip-
ulation domains, such as multi-robot construction, multi-
robot assembly and autonomous warehousing (Chen et al.
2022; Hartmann et al. 2021). MR-GTAMP is interesting as
multi-robot systems can perform manipulation tasks more
effectively than single-robot systems and can also perform
manipulation tasks that are beyond the capabilities of single-
robot systems (Shome et al. 2021). For example, in a
product-packaging task, a single robot may have to move
a lot of objects to clear a path to grasp an object, while a
two-robot system can easily perform a handover action to
increase the effectiveness of task execution.

Examples of MR-GTAMP problem instances are shown
in Fig. 1. The example task shown in Fig. 1 (left) requires
multiple robotic arms to sort colored objects into boxes of
corresponding colors in a confined workspace. The example
task shown in Fig. 1 (right) requires multiple mobile manipu-
lators tomove green objects to the green region. In both tasks,
white objects are movable obstacles and are only allowed
to be relocated within their current regions. These exam-
ple tasks embody the key challenges that MR-GTAMP aims
to address. First, they are in a hybrid discrete-continuous
planning space which is extremely large when multiple
robots are involved (Pan et al. 2021; Kim et al. 2022). This
involves high-level task planning, which decides which robot
should move which objects and in what sequence, and low-
level motion planning, which decides the positions to which
objects should be relocated and themotion trajectories robots
should follow. Second, in both scenarios, robots work in a
confined workspace and have to consider geometric con-
straints imposed by the environments and the tasks carefully.
Finally, robotsmust collaborate intelligently to perform tasks
effectively. For example, robots can achieve their targets
more quickly by concurrently manipulatingmultiple objects,
and they can avoid relocating toomany objects by performing
handover actions.

We address the following research question: How can we
enable multiple robots to perform GTAMP tasks effectively
and efficiently?

Determining effective collaborative action sequences for
multiple robots is difficult as manipulation planning in the
presence of movable obstacles has been shown to be NP-
hard for single-robots (Stilman et al. 2007; Hun Cheong et al.
2020). MR-GTAMP is even harder since one needs to decide
which robot should move which objects to which positions.

Our key insight to solving MR-GTAMP efficiently is
that we can compute information about the manipulation
capabilities of individual robots and their potential collab-
orative relationships by calling motion-planning algorithms
and then use it to prune the search space and guide the search
process. For example, based on the information that a robot
cannot reach an object, we can eliminate all task plans that
involve the action where the robot has to reach the object.
Moreover, the computed information can be used to generate
collaborative plans where each robot performs the tasks that
it excels at.

We propose a two-phase framework. In the first phase, we
compute the collaborative manipulation information, i.e., the
occlusion and reachability information for individual robots
and the potential collaborative relationships between them
(Sec. 4.1). In the second phase, we search for collabora-
tive task-and-motion plans using a Monte-Carlo Tree Search
(MCTS) exploration strategy due to its good exploration-
exploitation balance (Sec. 4.2). Our search algorithm is based
on two key components: (i) The first key component uses
the collected information from the first phase to generate
promising task skeletons formoving a specified set of objects
by formulating a series of mixed-integer linear programs
(MIPs), that can be solved efficiently by leveraging recent
developments in MIP solvers (Cplex 2009) (Sec. 4.2.1). The
term task skeleton represents a sequence of actions that are
missing continuous parameters required for execution. The
missing continuous parameters include the intended posi-
tions for objects that need to be relocated, and the motion
trajectories that the robots should follow to relocate these
objects. The formal definition of task skeleton can be found
in Sec. 3. (ii) The second key component efficiently finds fea-
sible continuous parameters for the generated task skeletons,
such as the locations to which to relocate objects (Sec. 4.2.2).

Fig. 1 Left: Sorting colored
objects into boxes of
corresponding colors. Right:
Moving the colored boxes to the
green region. In both scenarios,
white objects are only allowed
to be relocated within their
current regions (red). We use
PyBullet (Coumans and Bai
2016) as our simulator (Color
figure online)

123

Autonomous Robots (2023) 47:1537–1558 1539

Fig. 2 Overview of the proposed framework. Fig. 3 provides a more detailed visualization and description of Phase 2.

We denote the process of finding continuous parameters to
make a task skeleton executable as grounding. Fig. 2 presents
an overview of our framework.

Wecompare our frameworkwith two state-of-the-art base-
lines, namely, a general MR-TAMP framework (Pan et al.
2021) and amulti-robot extension of the ResolveSpatialCon-
straints (RSC) algorithm (Stilman et al. 2007). We evaluate
our framework in two challengingMR-GTAMPdomains and
show that it outperforms two state-of-the-art baselines with
respect to the planning time, the resulting plan length and the
number of objects moved (Sec. 5).

We also conducted an application study and show that our
framework can be used to coordinate a robotic arm with an
autonomous roof bolter for underground mining operations.
We demonstrate the execution of the computed plans in two
example roof-bolting scenarios both in simulation and on
robots.

Our work makes the following assumptions, which are
common in MR-TAMP (Shome et al. 2021; Pan et al. 2021):
(i) It considers only monotone instances of the MR-GTAMP
problem, where each object is moved only once. The mono-
tone problems are common in less constrained environments
such as home environments and relate to a range of ware-
house applications such as packing and stowing (Shome et
al. 2021). (ii) It assumes the robots synchronously start and
stop the executions of actions.We plan to relax these assump-
tions in future work.

Thiswork is an extended version of our prior paper (Zhang
et al. 2022). Wemake the following additional contributions.

• We conduct an application study on the roof-bolting task,
which is an essential operation within the underground
mining cycle. We show that the roof-bolting task can
be formulated as MR-GTAMP problems and addressed
efficiently with the proposed planning framework. We
demonstrate plan execution in two roof-bolting scenarios
both in simulation and on real robots.

• Weconduct additional scalability evaluation experiments
to study the performance change of our framework when
more robots are involved.

• We substantially expand the description of the task-
skeleton grounding component and the tree search algo-
rithm.

2 Related work

There has been much work on solving general TAMP prob-
lems efficiently. TAMP problems are challenging because
they require search in a large hybrid space that con-
sists of task-level search and motion-level search. Different
approaches for TAMP problems focus on different strate-
gies to combine task-level search and motion-level search.
In Lagriffoul et al. (2014); Bidot et al. (2017), efficient
geometric backtracking algorithms are proposed to system-
atically consider all the combinations of geometric instances
of a given symbolic task plan such that the symbolic task
plan can be efficiently rejected if there is no way to instanti-
ate it geometrically. InDantam et al. (2018), task-level search
is modeled as a constraint satisfaction problem and failures
on motion-level search are efficiently encoded as new con-

123

1540 Autonomous Robots (2023) 47:1537–1558

straints to inform task-level search. In Srivastava et al. (2014),
an extensible planner-independent interface layer is proposed
to combine task andmotion planning. In Garrett et al. (2020),
motion-level facts are encoded in task-level planning and
modern task planners (Hoffmann 2001) are leveraged to effi-
ciently search for task-and-motion plans. Recently, more and
more work has been focused on utilizing learning to guide
TAMPby ranking task plans (Khodeir et al. 2023), predicting
feasibility of task plans (Yang et al. 2022), and ranking object
importance in problem instances (Silver et al. 2020). More
comprehensive surveys on TAMP can be found in Garrett et
al. (2021); Mansouri et al. (2021).

In this work, we focus on GTAMP which is an important
subclass of TAMP.The goal of theGTAMP is tomove several
objects to regions in the presence of other movable objects.

There has been much work on solving single-robot
GTAMP (SR-GTAMP) problems efficiently (Kim et al.
2022, 2019; Kim and Shimanuki 2020) by utilizing learn-
ing to guide planning. However, these approaches cannot
be directly applied to multi-robot domains. Several prob-
lem types in the literature can also be seen as versions of the
GTAMP problem. In Stilman et al. (2007), the “manipulation
among movable obstacles" (MAMO) problem is addressed,
in which a robot has to move objects out of the way to move a
specified object to its goal location. Although this approach
can be extended to multi-robot settings straightforwardly, it
would require searching through a large space of all possible
combinations of multi-agent actions. Moreover, the focus of
this approach is on feasibility of the task-and-motion plans,
rather than on the plan length and number of objects moved.
In Hun Cheong et al. (2020) and Nam et al. (2020); Daniel-
czuk et al. (2019), the object retrieval problem is addressed,
in which a robot has to retrieve a target object from clutter by
relocating the surrounding objects. InKing et al. (2016);Kro-
ntiris andBekris (2016), the rearrangement planning problem
is addressed, in which a robot has to move objects into given
goal configurations. However, thesemethods do not plan col-
laboration strategies in multi-robot domains.

There has been work on solving general TAMP with sev-
eral robots efficiently (Pan et al. 2021; Toussaint and Lopes
2017; Mansouri et al. 2021). We focus on a subclass of these
problems, where a robot has to move objects in the pres-
ence of movable obstacles. In Pan et al. (2021), a novel
task scheduling layer, positioned between task planning and
motion planning, is proposed to prune task planning search
space. However, since this approach does not focus on geo-
metric aspects of the TAMP problem, it does not include
guidance for finding continuous parameters such as feasi-
ble positions for object relocation. In Rodríguez and Suárez
(2016); Ahn et al. (2021), efficient approaches are proposed
for the multi-robot object retrieval problem, assuming per-
manent object removal and considering one target object at
a time, while our planner relocates the obstacles within the

workspace and considers several target objects at the same
time. Multi-robot rearrangement planning problems (Shome
et al. 2021; Hartmann et al. 2021; Chen et al. 2022) are also
closely related to MR-GTAMP. However, the rearrangement
planning problems assume that the goal configurations of all
the movable objects are given, while MR-GTAMP requires
the planners to decide which objects to move and to which
positions. There is also work that focuses on task allocation
and scheduling for multiple robots, assuming that a sequence
of discrete actions to be executed is given (Behrens et al.
2020).However,MR-GTAMPrequires the planners to decide
whichdiscrete actions to execute, e.g.,whichobjects tomove.

There has beenwork on optimization-based TAMP, where
TAMP problems are modeled as mixed-integer non-linear
programs (Toussaint, 2015; Toussaint & Lopes, 2017),
mixed-integer linear programs (Kogo et al., 2021) and con-
tinuous nonlinear programs (Takano et al., 2021). However,
these frameworks do not focus on scenarios where obstacle
avoidance is the major challenge and objects can be moved
to enable the manipulation of other objects.

3 Problem formulation

In an MR-GTAMP problem, we have a set of nR robotsR =
{Ri }nRi=1, a set of fixed rigid objects F, a set of nM movable
rigid objects M = {Mi }nMi=1 and a set of nRe regions Re =
{Rei }nRei=1.We assume that all objects and regions have known
and fixed shapes. The focus of our work is not on grasp
planning (Quispe et al. 2016). So, for simplicity, we assume
a fixed set of graspsGrM,R for each objectM ∈ M and robot
R ∈ R pair.Gr is the union of the sets of grasps for all object
and robot pairs.

Each object has a configuration, which includes its posi-
tion and orientation. Each robot has a configuration defined
in its base pose space and joint space. We are given the
initial configurations of all robots, objects and a goal spec-
ification G in form of a conjunction of statements of the
form InRegion(M, Re), which is true iff object M ∈ M is
contained entirely in region Re ∈ Re. An example goal spec-
ification is (InRegion(M1, Re1) ∧ InRegion(M2, Re1))
which indicates the target that we want to move objects M1

and M2 to region Re1.
We define a grounded joint action as a set of nR actions

and motions performed by all the robots at one time step,
i.e., the grounded joint action at time step j is an nR-tuple
s j = 〈(a j

R1
, ξ

j
R1

), (a j
R2

, ξ
j
R2

), . . . , (a j
RnR

, ξ
j
RnR

)〉, where each
action a is a pick-and-place action or a wait1 action that the
corresponding robot executes andmotion ξ is a trajectory that
the corresponding robot executes, specified as a sequence of

1 As in Pan et al. (2021), a robot with a wait action does not have to do
anything but can move to avoid other robots.

123

Autonomous Robots (2023) 47:1537–1558 1541

robot configurations. In this work, we focus on pick-and-
place actions because of their importance in robotic manipu-
lation in cluttered space. Each pick-and-place action is a tuple
of the form 〈M, Re, Rpick, Rplace, gpick, gplace, P place

M 〉,
where M represents the object to move; Re represents the
target region for M ; Rpick and Rplace represent the robots
that pick and place M , respectively; gpick and gplace rep-
resent the grasps used by Rpick and Rplace, respectively,
and P place

M represents the configuration at which to place
M . Moreover, we call a pick-and-place action whose Rpick

is different from Rplace a handover action. Each grounded
joint action maps the configurations of the movable objects
to new configurations and the unaffected objects remain at
their old configurations.

We define a partially grounded joint action as an nR-
tuple of the form 〈āR1 , . . . , āRnR

〉, where ā is a wait action
or a pick-and-place action without the placement informa-
tion P place

M . We refer to a pick-and-place action without
the placement information as a partially grounded pick-and-
place action since it has only the information about the grasps
that will be used.

We define a task skeleton S̄ as a sequence of partially
grounded joint actions. We want to find a task-and-motion
plan, i.e., a sequence of grounded joint actions S that changes
the configurations of the objects to satisfy G.

We denote the process of finding feasible object place-
ments and motion trajectories for a task skeleton as ground-
ing.

A task-and-motion plan is valid iff, at each time step j :
(i) the corresponding multi-robot trajectory � j = 〈ξ j

R1
, ξ

j
R2

,

. . . , ξ
j
RnR

〉 is collision-free; (ii) the robots can use the cor-
responding motion trajectories and grasp poses to grasp
the target objects and place them at their target configura-
tions without collisions; and (iii) all handover actions can be
performed without inducing collisions. The considered col-
lisions include collisions between robots, collisions between
an object and a robot and collisions between objects.

4 Our approach

We present our two-phase MR-GTAMP framework (Fig. 2)
in this section. In thefirst phase,we compute the collaborative
manipulation information, i.e., the occlusion and reachability
information for individual robots and whether two robots
can perform a handover action for an object (Sec. 4.1). In the
second phase, we use aMonte-Carlo Tree Search exploration
strategy to search for task-and-motion plans (Sec. 4.2). The
search process depends on a key component that generates
promising task skeletons (Sec. 4.2.1) and a key component
that finds collision-free object placements and trajectories for
the task skeletons to construct valid task-and-motion plans
(Sec. 4.2.2).

4.1 Computing collaborativemanipulation
information

Given an MR-GTAMP problem instance and the initial con-
figurations of all objects and robots, our framework first
computes the occlusion and reachability information for indi-
vidual robots, e.g., whether an object blocks a robot from
manipulating another object and whether a robot can reach a
region to place an object there.We also compute whether two
robots can perform a handover action for an object by com-
puting whether they can both reach a predefined handover
point to transfer the object. In this work, we consider only
handover actions for objects that are named in goal specifica-
tionG for computational simplicity.We assume that all robots
return to their initial configurations after each time step.
Inspired by Kim et al. (2022), we use the conjunction of all
true instances of a set of predicates to represent the computed
information. To define these predicates, we define two vol-
umes of theworkspace similar to Stilman et al. (2007);Kimet
al. (2022). The first volume Vpick(M, g, R, ξ) is the volume
swept by robot R to grasp object M with grasp g following
trajectory ξ . The second volume Vplace(M, g, R, P place

M , ξ)

is the volume swept by robot R and object M to transfer the
object to configuration P place

M following trajectory ξ . Our
predicates are as follows:

• OccludesPick(M1, M2, g, R) is true iff object M1

overlaps with the swept volume Vpick(M2, g, R, ξ),
where ξ is chosen to be collision-free with all the objects
except M2, if possible;

• OccludesGoalPlace(M1, M2, Re, g, R) is true iff M1

is an object that overlaps with the swept volume Vplace(

M2, g, R, P place
M2

, ξ), where P place
M2

and ξ are chosen to
be collision-free with all the objects except M2, if possi-
ble, and the pair 〈M2, Re〉 is named in goal specification
G;

• ReachablePick(M, g, R) is true iff there exists a tra-
jectory for robot R to pick object M with grasp g;

• ReachablePlace(M, Re, g, R) is true iff there exists
a trajectory for robot R to place object M into region Re
with grasp g; and

• EnableGoalHandover(M, g1, g2, R1, R2) is true iff
robots R1 and R2 can both reach a predefined handover
point for object M with grasps g1 and g2, respectively,
and the object M is named in goal specification G.

For a predicate instance to be true, the corresponding tra-
jectories are required to be collision-free with respect to all
fixed objects. For a predicate instance of EnableGoalHan-
dover to be true, the two robots are required to not collide
with each other.

123

1542 Autonomous Robots (2023) 47:1537–1558

The values of all predicate instances can be computed
with existing inverse-kinematics solvers (Diankov 2010) and
motion planners (LaValle 2006). Ideally, we wish to find
trajectories for the robots that have the minimum number
of collisions with all objects, i.e., the minimum constraint
removal (Hauser 2013) trajectories. However, this is known
to be very time consuming. Thus, we follow previous
work (Kim et al. 2022) and first attempt to find a collision-
free trajectory with respect to all movable and fixed objects.
If we fail, we attempt to find a collision-free trajectory with
respect to only the fixed objects.

In our implementation, we efficiently compute the pred-
icates – with the exception of EnableGoalHandover –
in parallel for all robots by creating an identical simulation
environment for each robot.

4.2 Searching for task-and-motion plans

We now describe our search process (Fig. 3) for efficiently
finding effective collaborative task-and-motion plans. Our
search process is initialized with a set of task skeletons,
that is generated for moving the set of objects named in
the goal specification, utilizing the computed collaborative
manipulation information (Sec. 4.1). We will describe our
key component for generating task skeletons in detail in
Sec. 4.2.1. We then generate a search tree with a root node,
denoted as D0 as shown inFig. 3 (left).We associate an empty
sequence of grounded joint actions with node D0, denoted as

D0.S = ∅. We use the “." operator to denote the association
relationship. This implies that at node D0, we do not have
any grounded joint actions. We then create edges originating
from node D0, with each edge storing a distinct initial task
skeleton.

Throughout our search process, at each search iteration,
we select an edge that has not been evaluated yet, and we
evaluate it by trying to ground the task skeleton associated
with it. As previously defined, the term grounding refers to
the process of finding feasible object placements and motion
trajectories for a task skeleton to be executable. After each
evaluation, we compute a reward based on the evaluation
result. The reward will then be propagated back up the search
tree, with each edge in the path from the root node to the
selected edge having its value updated based on the reward.
We use a Monte-Carlo Tree Search (MCTS) exploration
strategy to balance exploration (exploring different unevalu-
ated edges) and exploitation (biasing the search towards the
branches that have received high rewards).

We use a reverse search algorithm inspired by Stilman et
al. (2007) to ground task skeletons. We will describe our key
component for task-skeleton grounding in detail in Sec. 4.2.2.
The insight behind the reverse search algorithm is to use
the grounded future joint actions as the artificial constraints
to guide the grounding for the current actions. Therefore,
throughout our search process, we save the grounding results
and use them as artificial constraints for subsequent ground-

Fig. 3 Visualization of the search process in the second phase of our
framework. We show the initialization stage of the search process (left)
and two example search iterations (middle, right) that lead to differ-
ent evaluation outcomes. Left: Blue arrows represent the workflow for
initializing the search tree. Middle: Yellow arrows represent a search

iteration that results in an updated set of objects to be moved and thus
a new set of task skeletons to be grounded. Right: Red arrows repre-
sent a search iteration that results in an executable task-and-motion plan
(Color figure online)

123

Autonomous Robots (2023) 47:1537–1558 1543

ing tasks. We use two examples, as shown in Fig. 3 (middle,
right), to illustrate the idea.

In the first example (Fig. 3 (middle)), we select edge E2

for evaluation.We create a new node, denoted as D2, to serve
as the head node of edge E2. The tail node of edge E2 is the
root node D0 whose associated sequence of grounded joint
actions is empty. This means that we can attempt to ground
the task skeleton associated with E2, denoted as E2.S̄, with-
out any artificial constraints. Ideally, if we manage to ground
task skeleton E2.S̄ successfully, we would get an executable
task-and-motion plan to perform the task. However, in many
situations, we can only ground the task skeleton partially.
This implies that there are conflicts that emerge during task-
skeleton grounding. For example, there would not be enough
space to place objects unless we relocate some objects that
were not planned to be moved initially. Such situations can
arise as we cannot account for all geometric specifics dur-
ing task-skeleton generation. In such situations, we generate
new task-skeletons to address the emerged conflicts, and we
expand the tree by creating new edges, with each edge storing
a distinct new task skeleton. In our first example, we create
new edges originating from node D2. Moreover, we store
the sequence of joint actions that have been grounded to this
point in node D2, denoted as D2.S. It should be noted that
D2.S contains D0.S and the grounded part of E2.S̄.

In the second example (Fig. 3 (right)), we select edge E2.1

for evaluation. The grounding of the task skeleton associated
with edge E2.1, denoted as E2.1.S̄, should consider D2.S as
artificial constraints which is the sequence of joint actions
that have been grounded to this point. If we successfully
ground E2.1.S̄, we can get an executable task-and-motion
plan by concatenating the grounded task-skeleton with D2.S.

At each search iteration, we have four phases: selection,
expansion, evaluation and backpropagation.
Notation.We use |S| and |S̄| to denote the number of objects
intended to be moved in sequences of grounded joint actions
S and task skeletons S̄, respectively.
Selection phase. In the selection phase, we start at the
root node and recursively select the edge with the highest
Upper Confidence Bound (UCB) value until we reach an
edge Ei with a task skeleton that has not been grounded
yet. We denote the tail node of edge Ei as Dj . We fol-
low the UCB value formula used in Silver et al. (2017).
The UCB value of the pair of node Dj and edge Ei is:

Q(Dj , Ei) = Ei .value
Ei .visi ts+1 +c×Ei .prior×

√
Dj .visi ts

Ei .visi ts+1 , where
Ei .value is the cumulative reward edge Ei has received so
far, Dj .visi ts and Ei .visi ts are the number of times Dj and
Ei have been selected, c is a constant to balance exploration
and exploitation, and Ei .prior is used to bias the search with
domain knowledge (Silver et al. 2017). In our implementa-
tion, we set Ei .prior to 1

|Ei .S̄| to prioritize grounding task

skeletons with fewer objects to move. The value Ei .value of
an edge is initialized to 0.

Assume that we select edge Ei from node Dj in the selec-
tion phase.
Expansion phase. In the expansion phase, we create a new
node Di as the head node of edge Ei .
Evaluation phase. In the evaluation phase, we use the task-
skeleton grounding component (Sec. 4.2.2) to ground task
skeleton Ei .S̄ associated with Ei to compute reward r for
selecting edge Ei . Note that node Dj is the tail node of edge
Ei and the grounded sequence of joint actions stored in node
Dj is denoted as Dj .S. There are three possible outcomes:
(i) If we fail at grounding, we set r to 0. (ii) If we obtain a
sequence of grounded joint actions S∗, then we found a valid
task-and-motion plan. In this case,we set r to 1+α 1

|S∗| , where
α is a constant hyperparameter used to balance the two terms
of the reward that is set to 1 in our experiments (Sec. 5). The
first term of the reward incentivizes the search algorithm to
select edges where more actions have been grounded, and
the second term incentivizes the search algorithm to select
edges that move fewer objects. (iii) In the third case, task
skeleton Ei .S̄ cannot be fully grounded without relocating
some objects that are not planned to be moved in Ei .S̄. In
this case, we obtain a sequence of grounded joint actions S′
and a set of objectsM∗ from the grounding process. Here, S′
consists of Dj .S and the grounded part of task skeleton Ei .S̄.
We useM∗ to represent the set of objects for which we need
to find a sequence of grounded joint actions, denoted as SM∗ ,
to relocate so that we can construct a final task-and-motion
plan for the problem by concatenating SM∗ with S′. We then
call the task-skeleton generating component (Sec. 4.2.1) to
move M∗. If we cannot find any task skeleton to move M∗,
then we set r to 0. However, if we find a set of task skeletons
{S̄}, then we set r to S′.length

S′.length+S̄∗.length +α 1
|S′|+|S̄∗| , where S̄

∗

is the task skeleton with the minimum number of time steps
among all task skeletons {S̄} and S′.length and S̄∗.length
represent the number of time steps of S′ and S̄∗, respectively.

We would like to point out that the reward in the second
possible outcome represents a special case of the reward in
the third possible outcome. Both rewards use their first terms
to incentivize the search algorithm to select edgeswheremore
actions have been grounded, and their second terms to incen-
tivize the search algorithm to select edges that move fewer
objects.

We use node Di to store the returned grounded joint
actions S′ as Di .S. In the third scenario, if we find new task
skeletons, then we create new edges to store them for node
Di . If no new edge is created, then we mark node Di as a
terminal node.
Backpropagation phase. In the backpropagation phase, we
update the cumulative reward of the selected edges {Esel}
with the computed reward r according to Esel .value =

123

1544 Autonomous Robots (2023) 47:1537–1558

Esel .value + r . We also increment the number of visits of
the selected edges and nodes by 1.

In our implementation, we track the grounding failures for
different task skeletons similarly to Ren et al. (2021), so that
we can skip over those branches where grounding their task
skeletons is known to be infeasible.

4.2.1 Key component 1: generating promising task
skeletons

One key component in the second phase of our framework
is to generate promising task skeletons {S̄} for moving a set
of objects M∗ given a sequence of already grounded joint
actions S′. As previously defined, the term task-skeleton
refers to a sequence of actions without the placement and
trajectory information. This key component will be used in
two situations. It is firstly called at the initialization stage
of the search process (Fig. 3 (left)). In this situation, we set
S′ as empty and set M∗ as the set of objects named in the
goal specification of the problem instance. We will use the
generated task skeletons to initialize the search tree as shown
in Fig. 3 (left). The second scenario where this component
is called is when we can only ground part of a task skeleton
in the evaluation phase during the search process. Figure3
(middle) depicts one example search iteration where this sit-
uation happens. In this example search iteration, we set S′
as S2 and set M∗ as M∗

2. We use this key component to
generate task skeletons to relocate M∗

2. We take S′ as input
because we should exclude objects from our task-skeleton
generation that are already planned to be moved in S′. The
task-skeleton generation algorithm is designed to utilize the
computed collaborative manipulation information from the
first phase (Sec. 4.1) to eliminate task skeletons that include
infeasible actions and to prioritize motion planning for effec-
tive task plans that have fewer time steps and fewer objects
to be moved.
Notation.Assume that we want to generate task skeletons to
move objectsM∗ given a sequence of grounded joint actions
S′. The set of objects included in S′ cannot be moved again
because of the monotone assumption. For simplicity of pre-
sentation, we slightly abuseM to denote the movable objects
not included in S′.
Building the collaborative manipulation task graph.

To reason about the collaborative manipulation capa-
bilities of the individual robots, we encode the computed
information as a graph. We build a collaborative manipula-
tion task graph (CMTG) to capture the precedence of the
manipulations of different objects, i.e., we can only move an
object after we move the obstacles that block the pick-and-
place action we are going to execute, based on the computed
information from the first phase (Sec. 4.1). Since we only
compute occlusion information for placing objects named in
the goal specification, the precedence encoded in the CMTG

lack occlusion information for relocating objects that are not
named in the goal specification. Instead, we assume that
we will always find the feasible places to relocate these
objects. We determine the exact object placements during
task-skeleton grounding (Sec. 4.2.2).

A CMTG (Fig. 4) has two types of nodes: An object node
represents an object M ∈ M; and an action node represents
a partially grounded pick-and-place action ā, i.e. a pick-and-
place action without placement information. A CMTG has
three types of edges: An action edge is an edge from an
object node to an action node. It represents moving the object
represented by the object node with the action represented
by the action node. A block-pick edge is an edge from an
action node to an object node. It represents that the object
represented by the object node obstructs the pick action of
the action represented by the action node. A block-place edge
is an edge from an action node to an object node. It represents
that the object represented by the object node obstructs the
place action of the action represented by the action node.
All block-place edges are connected to the action nodes that
move the objects named in the goal specification. A CMTG
has a set of object nodes that represents the input objectsM∗
that must be moved.

Given the computed collaborative manipulation informa-
tion and a set of objects M∗ to move, we incrementally
construct a CMTG by iteratively adding object M ∈ M∗
to the CMTG with Alg. 1. Given the CMTG C built so far
and an object M to add, we first add an object node repre-
senting M toC (Alg. 1, line 4). Then, for each pair of a robot
R ∈ R and its grasp gM,R ∈ GrM,R , we find all partially
grounded pick-and-place actionsNa that move object M to its
target region ReM with R as the pick robot (Alg. 1, line 5-
20). For each partially grounded pick-and-place action ā, we
find all movable objects that block the pick action of ā and
add the corresponding block-pick edges (Alg. 1, line 28-31).
If M is named in goal specification G, then we also find all
movable objects that block the place action of ā and add the
corresponding block-place edges (Alg. 1, line 32-36). We
recursively add the blocking objects in a similar way (Alg. 1,
lines 30 and 35).
Mixed-integer linear program formulation and solving.
Given a CMTG C, we find a set of task skeletons that spec-
ify which robot will move which object at each time step.
We assume that each object will be moved at most once, i.e.,
we assume that the problem instances aremonotone. Given a
time step limit T , we cast the problem of finding a task skele-
ton that has a minimum number of objects to be moved as a
mixed-integer linear program (MIP). We encode the prece-
dence of manipulating different objects as formal constraints
in the MIP such that we can generate task skeletons that are
promising to be successfully grounded. We incrementally
increase the time step limit T . In our implementation, the
maximum time step limit is a hyperparameter.

123

Autonomous Robots (2023) 47:1537–1558 1545

Fig. 4 (Left) An example scenario where we want to generate task
skeletons to move object M1 given an empty sequence of grounded
joint actions. (Right) The corresponding collaborative manipulation
task graph for moving object M1. The rounded rectangular nodes are

action nodes. The circular nodes areobject nodes. The red circular nodes
represent objects that are specified to be moved. The yellow arrows rep-
resent action edges. The purple arrows represent block-place edges, and
the blue arrow represents a block-pick edge (Color figure online)

Algorithm 1 AddObject(M,C)
1: input: an object M ; the collaborative manipulation task graph built so far, denoted as C.
2: if M ∈ C.object_nodes then
3: return
4: C.object_nodes.add(M)

5: if M is named in goal specification G then
6: ReM = GetGoalRegion(M)
7: else
8: ReM = GetCurrentRegion(M)
9: for Rpick ∈ R do
10: for gM,Rpick ∈ GrM,Rpick do
11: ā = {}
12: if ReachablePick(M, gM,Rpick , Rpick) then
13: if ReachablePlace(M, ReM , gM,Rpick , Rpick) then
14: ā.add((M, ReM , Rpick , Rpick , gM,Rpick , gM,Rpick))

15: if M is named in goal specification G then
16: for Rplace ∈ R \ {Rpick} do
17: for gM,Rplace ∈ GrM,Rplace do
18: if EnableGoalHandover(M, gM,Rpick , gM,Rplace , Rpick , Rplace) and
19: ReachablePlace(M, ReM , gM,Rplace , Rplace) then
20: ā.add((M, ReM , Rpick , Rplace, gM,Rpick , gM,Rplace))

21: for ā ∈ ā do
22: Rpick

ā is the robot to pick M in ā

23: gpick
ā is the grasp used by Rpick

ā in ā

24: Rplace
ā is the robot to place M in ā

25: gplace
ā is the grasp used by Rplace

ā in ā
26: C.action_nodes.add(ā)

27: C.action_edges.add(M, ā)

28: for Mj ∈ M do

29: if OccludesPick(Mj , M, gpick
ā , Rpick

ā) then
30: AddObject(Mj ,C)
31: C.block_pick_edges.add(ā, Mj)

32: if M is named in goal specification G then
33: for Mj ∈ M do

34: if OccludesGoalPlace(Mj , M, ReM , gplace
ā , Rplace

ā) then
35: AddObject(Mj ,C)
36: C.block_place_edges.add(ā, Mj)

For simplicity of presentation, we slightly abuseM again
to denote the objects in C. We use M∗ ⊆ M to denote the

objects that are intended to be moved. We slightly abuse ā to
denote the set of partially grounded pick-and-place actions in

123

1546 Autonomous Robots (2023) 47:1537–1558

C. We use Eā = {(M, ā)} to denote the set of action edges in
C. We use E pick

B = {(ā, M)} to denote the set of block-pick
edges and E place

B = {(ā, M)} to denote the set of block-

place edges in C, EB = E pick
B ∪ E place

B , where M ∈ M and
ā ∈ ā. We define the binary variables Xt

M,ā and Xt
ā,M , where

t ∈ [1, . . . , T], (M, ā) ∈ Eā and (ā, M) ∈ EB . Xt
M,ā = 1

implies that action ā is executed at time step t ′ s.t. t ′ ≥ t .
Xt
ā,M = 1 implies that object M can be considered for being

moved at time step t since it blocks action āwhich is executed
at or after time step t .

Our MIP model is shown in the following. The implica-
tions in constraint (11) and constraint (12) are compiled to
linear constraints using the big-Mmethod (Griva et al. 2009):

minimize
∑

(M,ā)∈Ea
X1
M,ā

X t
M,ā ≥ Xt+1

M,ā,∀(M, ā) ∈ Ea, t ∈ [1, T − 1]
(1)

Xt
M,ā = Xt

ā,M ′ ,∀(M, ā) ∈ Eā, (ā, M ′) ∈ EB,

t ∈ [1, T] (2)

Xt
M,ā′ ≤

∑
(ā,M)∈EB

Xt
ā,M ,∀M ∈ M \ M∗,

(M, ā′) ∈ Eā, t ∈ [1, T] (3)
∑

(M,ā)∈Eā s.t. R in ā
XT
M,ā ≤ 1,∀R ∈ R (4)

∑
(M,ā)∈Eā

XT
M,ā ≥ 1 (5)

∑
(M,ā)∈Eā s.t. R in ā

X t
M,ā ≤ 1+

∑
(M,ā)∈Eā s.t. R in ā

X t+1
M,ā,

∀R ∈ R, t ∈ [1, T − 1] (6)
∑

(M,ā)∈Eā
Xt
M,ā ≥ 1 +

∑
(M,ā)∈Eā

Xt+1
M,ā,

t ∈ [1, T − 1] (7)
∑

(M,ā)∈Eā
X1
M,ā = 1,∀M ∈ M∗ (8)

∑
(M,ā′)∈Eā

X1
M,ā′ ≥ X1

ā,M ,∀(ā, M) ∈ EB (9)
∑

(M,ā)∈Eā
X1
M,ā ≤ 1,∀M ∈ M (10)

X1
ā,M = 1 �⇒

∑
t∈[1,...,T] X

t
ā,M ≥

(
∑

(M,ā′)∈Eā

∑
t∈[1,...,T] X

t
M,ā′) + 1,

∀(ā, M) ∈ E pick
B (11)

X1
ā,M = 1 �⇒

∑
t∈[1,...,T] X

t
ā,M ≥

(
∑

(M,ā′)∈Eā

∑
t∈[1,...,T] X

t
M,ā′),

∀(ā, M) ∈ E place
B (12)

Constraint (1) enforces that Xt
M,ā indicates whether we

have selected ā at or after time step t . Constraint (2) enforces
that, if an action is selected, then the objects that obstruct

it are also moved. Constraint (3) enforces that, besides the
objects inM∗, we only move objects that obstruct the actions
we have selected. Constraints (4 − 7) enforce that, at each
time step, we select at least one action, while each robot
executes at most one action. Constraint (8) enforces that the
objects in M∗ are moved. Constraint (9) enforces that all
obstacles for the selected actions are moved, while constraint
(10) enforces that each object is moved only once. Constraint
(11) enforces that each object is moved after the obstacles
for its pick action have beenmoved. Constraint (12) enforces
that each object is moved after the obstacles for its place
action have been moved. The objective function represents
the number of moved objects.

From a MIP solution, we construct a task skeleton which
is grounded later. Moreover, we want to construct multiple
task skeletons since some task skeletons may be impossible
to ground. Every time we obtain a solution, we add a con-
straint to the MIP model to enforce that we find a different
solution from the existing ones until we collect enough task
skeletons (Danna et al. 2007). In our implementation, the
maximum number of task skeletons is a hyperparameter that
varies for different problem instances.

4.2.2 Key component 2: task-skeleton grounding

The second key component in the search phase (Sec. 4.2) is to
ground the task skeletons, i.e., to find the object placements
and motion trajectories for the partially grounded pick-and-
place actions. We use a reverse search algorithm inspired
by Stilman et al. (2007) since forward search for continuous
parameters of long-horizon task skeletons without any guid-
ance is very challenging (Kim et al. 2019). The insight behind
the reverse search strategy is to use the grounded future joint
actions as the artificial constraints to guide the grounding for
the present time step.

The input to this component is a task skeleton S̄ of T time
steps and a sequence S f ut of future grounded joint actions.
We use S f ut as artificial constraints to guide the grounding
for the current actions, so that we can efficiently find geo-
metrically feasible long-horizon plans (Stilman et al. 2007).
Ideally, if we manage to ground task skeleton S̄ success-
fully, we will get a fully executable task-and-motion plan.
However, in many situations, since we cannot account for
all geometric specifics during task-skeleton generation, we
can only ground the task skeleton partially. In such cases,
we will get a set of objects, denoted as M∗, for which we
have to generate new task skeletons to relocate. We will then
return the sequence of grounded joint actions together with
objectsM∗. Furthermore, in certain situations, the grounding
may totally fail. In such cases, we will simply return a failure
flag.

We denote the volume of work space occupied by
grounded joint actions S f ut as V f ut . We denote the set of

123

Autonomous Robots (2023) 47:1537–1558 1547

Algorithm 2 Task- Skeleton Grounding(S̄,S f ut ,M f ut ,V f ut ,Mout)

1: input: a task skeleton S̄; a sequence of grounded joint actions S f ut ; the set of objects that are planned to be moved in S f ut , denoted as
M f ut ; the volume of work space that is occupied by S f ut , denoted as V f ut ; the set of movable objects that are not planned to be moved
in S f ut and S̄, denoted asMout .

2: result: three possible returns: (i) a sequence of grounded joint actions S∗, indicating that we successfully find an executable task-and-
motion plan; (ii) a sequence of grounded joint actions S′ and a set of objectsM∗, indicating that we can only partially ground task skeleton

S̄ and we have to relocate objectsM∗; (iii) a failure flag.
3: notation: We denote the sequence concatenating operation as ⊕.
4: G = goal specification of the MR-GTAMP problem instance
5: M = the set of movable objects of the MR-GTAMP problem instance
6: for t ∈ [T , . . . , 1] do
7: S̄[t] = PartiallyGroundedJointActionAt(S̄, t)
8: Mt ,Rt = ObjectsAndRobotsToMove(S̄[t])
9: P = FindPlacements(Mt , Mout ∪ M f ut ∪ F ∪ V f ut , S̄[t])
10: if P is None then
11: P = FindPlacements(Mt ,M f ut ∪ F ∪ V f ut , S̄[t])
12: if P is None then
13: return failure flag
14: � = FindTrajectories(Mt , Rt , P,M f ut ∪ F, S̄[t])
15: if � is None then
16: return failure flag
17: S f ut = CreateGroundedJointAction(S̄[t], �,P) ⊕ S f ut
18: M∗ = HaveNotBeenMoved(G, S f ut) ∪ MovablesOcclude(M, S f ut)
19: S′ = S f ut
20: return S′,M∗
21: � = FindTrajectories(Mt , Rt , P,Mout ∪ M f ut ∪ F, S̄[t])
22: if � is None then
23: � = FindTrajectories(Mt , Rt , P,M f ut ∪ F, S̄[t])
24: if � is None then
25: return failure flag
26: S f ut = CreateGroundedJointAction(S̄, t, �,P) ⊕ S f ut
27: M∗ = HaveNotBeenMoved(G, S f ut) ∪ MovablesOcclude(M, S f ut)
28: S′ = S f ut
29: return S′,M∗
30: M f ut = M f ut ∪ Mt

31: S f ut = CreateGroundedJointAction(S̄, t, �,P) ⊕ S f ut
32: V f ut = V f ut .append(SweptVolume(�,Mt ,Rt

))

33: S∗ = S f ut
34: return S∗

movable objects that will bemoved by grounded joint actions
S f ut asM f ut . We denote the set of movable objects that will
not be moved by task skeleton S̄ and grounded joint actions
S f ut asMout . For time step t ∈ [1, . . . , T], we denote the set
of objects that are planned to be moved asMt and the set of
robots that are planned to move them as Rt . Recall that we
denote the goal specification and the set of movable objects
as G and M, respectively.

The detailed grounding algorithm is as follows (Alg. 2).
The grounding starts at the last time step T . For time step t ,
we first sample placements for objectsMt that are collision-
free with respect to objectsMout ∪M f ut at their initial poses,
fixed objectsF and volume V f ut (Alg. 2, line 9). The sampled
placements should not collide with volume V f ut , because,
otherwise, they will prevent the execution of future grounded
joint actions that occupy V f ut .

Given the placements, we plan pick trajectories, place
trajectories and handover trajectories for objects Mt and

robots Rt that are collision-free with respect to objects
F∪M f ut∪Mout at their initial poses (Alg. 2, line 21).Wenote
that, in addition to the fixed objects F and the objects Mout ,
the planned trajectories should not collide with the objects
M f ut that are moved in future grounded joint actions.

Since we may move multiple robots and objects con-
currently, we do not allow collisions between the robots,
collisions between the moved objects and collisions between
a robot and a moved object that is not intended to be manip-
ulated by that robot.

If we succeed in grounding the joint action at time step
t , then we expand volume V f ut with the volume occupied
by the newly planned robot and object trajectories, expand
the set M f ut with the moved objects Mt and expand the
grounded joint actions S f ut with the newly grounded joint
action (Alg. 2, line 30-32). We then start to ground the joint
action at time step t −1. If we succeed in grounding the joint
actions at every time step, we return an executable task-and-

123

1548 Autonomous Robots (2023) 47:1537–1558

motion plan S∗ = S f ut . However, if we fail at grounding the
joint action at time step t , we relax the collision constraints by
allowing the sampled placements and trajectories to collide
with the objects Mout since we can generate new skeletons
to move them later (Alg. 2, line 10-20 and line 22-29). If
we succeed after relaxing the constraints, then we terminate
the grounding and return the sequence of the grounded joint
actions S′ = S f ut and a set of objectsM∗. The set of objects
M∗ consists of the objects that are named in the goal spec-
ification G but have not yet been moved and the movable
objects in the environment that occlude the grounded joint
actions S′ (Alg. 2, line 18 and line 27). During the search pro-
cess (Sec. 4.2), the returned S′ andM∗ are then used as input
to the first key component (Sec. 4.2.1) to generate new task
skeletons. If, after relaxing the collision constraints, we still
cannot find feasible placements and paths, then we simply
return failure.

5 Experiments

We empirically evaluate our framework in two challenging
domains and show that it can generate effective collaborative
task-and-motion plans more efficiently than two baselines.

5.1 Baselines

We compare our framework with two state-of-the-art TAMP
frameworks. We provide both baseline planners with infor-
mation about the reachable regions of each robot.

Ap1 is a multi-robot extension of the RSC algorithm (Stil-
man et al. 2007) by assuming that the robots form a single
composite robot. The action space includes all possible
combinations of the single-robot actions and collaboration
actions. Unlike our framework, which eliminates infeasible
task plans using computed information about the manipu-
lation capabilities of individual robots (Sec. 4.1), thereby
pruning the search space, Ap1 would require searching
through a large space of all possible combinations of multi-
agent actions. Moreover, the focus of Ap1 is on feasibility of
the task-and-motion plans, rather than on the plan length and
number of objectsmoved. In contrast, our framework uses the
intermediate grounding results (Sec. 4.2) to guide the search
towards more effective task-and-motion plans, considering
the resulting plan length and the number of objects moved.

Ap2 is a general MR-TAMP framework (Pan et al. 2021)
that is efficient in searching for promising task plans based on
the constraints incurred during motion planning. We imple-
ment the planner in a way such that geometric constraints
can be utilized efficiently, e.g., the planner can identify
that it needs to move the blocking objects away before it
can manipulate the blocked objects. Unlike our framework,
which guides the search for feasible positions for object relo-

cation using sampled future actions (Sec. 4.2.2), Ap2 does
not include guidance for finding feasible positions for object
relocation, which can facilitate finding feasible plans in con-
fined settings.

5.2 Benchmark domains

We evaluate the efficiency and effectiveness of our method
and the two baselines in the packaging domain shown in
Fig. 1 (left) and the box-moving domain shown in Fig. 1
(right).
Packaging (PA): In this domain, each problem instance
includes 2 to 6 robots, 3 to 5 goal objects, 2 to 13 mov-
able objects besides the goal objects, 1 start region and 3 goal
regions.As inKimet al. (2022),we omitmotion planning and
simply check for collisions at the picking and placing con-
figurations computed by inverse kinematics solvers in this
domain, because collisions in this domain mainly constrain
the space of feasible picking and placing configurations. We
use Kinova Gen2 lightweight robotic arms. For each bench-
mark problem instance, we conduct 20 trials with a timeout
of 1, 200 seconds. For all methods, we also count a trial as
failed, if all possible task plans have been tried.
Box-moving (BO): In this domain, we evaluate our frame-
work for mobile manipulating tasks where the robots have to
move target objects from one room to the other room (Fig. 1
(right)). We use simulated PR2 robots. In this domain, each
problem instance includes 2 robots, 2 goal objects, 6 mov-
able objects besides the goal objects, 1 start region and 1
goal region. For simplification, we do not consider handover
actions. For each benchmark problem instance, we conduct
20 trials with a timeout of 1, 200 seconds. For both methods,
we also count a trial as failed, if all possible task plans have
been tried.

We use bidirectional rapidly-exploring random trees
(LaValle 2006) for motion planning and IKFast (Diankov
2010) for inverse kinematics solving. All methods share the
same grasp sets, the same sets of single-robot actions and the
same sets of collaboration actions. All experiments were run
on an AMD Ryzen Threadripper PRO 3995WX Processor
with a memory of 64GB.

5.3 Results

We refer to the number of time steps as makespan and the
number of moved objects as motion cost.
Planning time and success rate. Table 1 shows that our
method outperforms both baseline methods on all problem
instances with different numbers of goal objects andmovable
objects with respect to both the planning times and success
rates. Ap1 and our method achieved higher success rates on
all problem instances than Ap2 because the reverse search
strategy (Sec. 4.2.2) utilized in Ap1 and our method can find

123

Autonomous Robots (2023) 47:1537–1558 1549

Ta
bl
e
1

C
om

pa
ri
so
n
of

th
e
pr
op
os
ed

m
et
ho
d
w
ith

tw
o
ba
se
lin

e
m
et
ho
ds

in
th
e
tw
o
be
nc
hm

ar
k
do
m
ai
ns

re
ga
rd
in
g
th
e
su
cc
es
s
ra
te
,p
la
nn
in
g
tim

e,
m
ak
es
pa
n
an
d
m
ot
io
n
co
st

Pr
ob

le
m

in
st
an
ce

Su
cc
es
s
ra
te
%

Pl
an
ni
ng

tim
e
(s
)

M
ak
es
pa
n

M
ot
io
n
co
st

A
p1

A
p2

O
ur
s

A
p1

A
p2

O
ur
s

A
p1

A
p2

O
ur
s

A
p1

A
p2

O
ur
s

PA
5

10
0.
0

80
.0

10
0.
0

5.
6
(±

1.
3)

6.
1
(±

2.
1)

2.
4
(±

0.
2)

3.
0
(±

0.
2)

2.
9
(±

0.
2)

2.
8
(±

0.
2)

3.
8
(±

0.
2)

3.
6
(±

0.
2)

3.
6
(±

0.
2)

PA
7

80
.0

70
.0

10
0.
0

39
.8

(±
12
.8
)

10
.5

(±
2.
9)

4.
0
(±

0.
9)

3.
7
(±

0.
3)

3.
0
(±

0.
3)

3.
1
(±

0.
2)

4.
8
(±

0.
3)

4.
3
(±

0.
2)

4.
1
(±

0.
2)

PA
10

55
.0

40
.0

90
.0

12
9.
2
(±

58
.2
)

N
/A

19
.6

(±
6.
1)

4.
6
(±

0.
6)

N
/A

4.
2
(±

0.
3)

5.
6
(±

0.
6)

N
/A

5.
2
(±

0.
4)

B
O
8

85
.0

35
.0

10
0.
0

24
6.
5
(±

54
.2
)

N
/A

18
2.
2
(±

48
.3
)

4.
8
(±

0.
2)

N
/A

3.
4
(±

0.
3)

7.
6
(±

0.
1)

N
/A

5.
0
(±

0.
6)

T
he

nu
m
be
rs
in

th
e
na
m
es

of
th
e
pr
ob
le
m

in
st
an
ce
s
in
di
ca
te
th
e
nu
m
be
rs
of

th
e
go
al
ob
je
ct
s
an
d
th
e
m
ov
ab
le
ob
je
ct
s
be
si
de
s
th
e
go
al
ob
je
ct
s.
In

PA
5,
PA

7
an
d
PA

10
,e
ac
h
pr
ob
le
m

in
st
an
ce

ha
s
3

go
al
ob

je
ct
s
an
d
2
ro
bo

ts
.W

e
om

it
th
e
pl
an
ni
ng

tim
e
an
d
so
lu
tio

n
qu

al
ity

re
su
lts

fo
r
A
p2

on
PA

10
an
d
B
O
8
be
ca
us
e
its

su
cc
es
s
ra
te
is
si
gn

ifi
ca
nt
ly

lo
w
er

th
an

th
os
e
of

th
e
ot
he
r
tw
o
m
et
ho
ds

feasible object placements much more efficiently than the
forward search strategy used inAp2.Moreover, Ap2 can gen-
erate task plans that include irrelevant objects while Ap1 and
our method focus onmanipulating the important objects, like
blocking objects for necessary manipulation or goal objects.
Our method achieved higher success rates with shorter plan-
ning times than Ap1 on the difficult problem instances PA7,
PA10 and BO8 because our method first generates promis-
ing task skeletons (Sec. 4.2.1) that use the information about
the collaborative manipulation capabilities of the individ-
ual robots to prune the task plan search space, which can
be extremely large when there are many objects and mul-
tiple robots (Pan et al. 2021). The main cause of failure of
our method is running out of task skeletons which can be
addressed by incrementally adding more task skeletons dur-
ing the search process.
Solution quality. Table 1 shows that our method can gener-
ate effective task-and-motion planswith respect to themotion
cost and themakespan. Ourmethod first generates task skele-
tons with short makespans by incrementally increasing time
step limit and with low motion costs by incorporating the
motion cost into the objective function of the MIP formula-
tion (Sec. 4.2.1). On the other hand, our MCTS exploration
strategy motivates the planner to search for effective plans
with small numbers of moved objects. It should be noted
that, although Ap2 generated plans with shorter makespans
for PA7, it has lower success rates and longer planning times
than our method. Also, Ap1 generated plans that move sig-
nificantly more objects for PA7, PA10 and BO8 than our
method because it uses a depth-first search strategy for find-
ing feasible plans (Stilman et al. 2007).
Scalability evaluation. We evaluated the scalability of our
method in the PA domain with 18 movable objects, includ-
ing 5 goal objects and 2 to 6 robots. Table 2 shows that our
method can solve these large problem instances. For problem
instances with 3 and more robots, it achieved higher success
rates compared to the problem instances with 2 robots.More-
over, our method can achieve shorter makespans and lower
motion costs when more robots are involved. These results
show that our method can effectively utilize multiple robots
to address challenging planning problem instances and gen-
erate intelligent collaboration strategies for multiple robots.

However, in our experiment, the success rates for problem
instances with 5 and 6 robots are lower than the success rates
for problem instances with 3 and 4 robots. The required plan-
ning time also increaseswhenmore robots are added, starting
from the problem instances with 3 robots. This is because
addingmore robots into the systemwill lead tomore cluttered
environments andmore difficult collision avoidance between
robots. In future work we will explore potentially mitigating
this issue by carefully designing the layout of robots (Tay
and Ngoi 1996).

123

1550 Autonomous Robots (2023) 47:1537–1558

Table 2 The results of the
proposed method in domain PA
regarding the success rate,
planning time, makespan and
motion cost

Problem instance Success rate % Planning time (s) Makespan Motion cost

2 robots 60.0 148.4 (±36.8) 6.1 (±0.4) 8.9 (±0.4)

3 robots 80.0 99.0 (±48.6) 4.9 (±0.3) 8.2 (±0.5)

4 robots 85.0 109.1 (±33.6) 4.7 (±0.3) 8.2 (±0.4)

5 robots 75.0 207.0 (±48.7) 4.1 (± 0.2) 8.0 (± 0.3)

6 robots 70.0 362.7 (± 64.6) 3.4 (± 0.2) 7.7 (± 0.4)

The numbers in the names of the problem instances indicate the numbers of the robots

Fig. 5 A human operator is installing a bolt into the roof bolter (https://
bit.ly/3tfYOMY)

6 Application study: roof bolting

Roof bolting is an essential operationwithin the underground
mining cycle, as it aims to provide support to the exposed roof
and ribs of the new excavation (Peng and Tang 1984; Mark
2002) (Fig. 5). 2 The roof bolting operation follows imme-
diately after the extraction task and reinforces the roof to
provide a safe working environment. Roof bolting is utilized
in almost all coal mining operations around the world.

The roof bolt binds the unstable roof together, prevent-
ing movement in a rock mass. There are several types of
bolt installation techniques, depending on the mechanics of
the bolt and the rock. This application study focuses on a
technique where installation of the bolts is done by drilling a
hole in the roof, inserting the resin and inserting the bolt. The
roof bolting operation is a labor-intensive task that requires
the operators of the machine to install and replace detach-
able drill steels and cutting bits, holding and positioning of
resin cartridges and 1.2 to 3m (4 to 10 foot) long bolts in
a pattern that can be half a meter square. During the roof
bolts installation process, the operators are at risk fromwork-
ing in the proximity of potentially unsupported roof, loose
bolts, hydraulic-powered equipment, gas and heavy tools in
awkward conditions. Apart from these safety risks, the oper-

2 https://bit.ly/3tfYOMY

ators are also vulnerable to inhalation of dust and noise from
drilling and bolting processes which can be traced to the sev-
eral pumps from the roof bolter machinery (Jiang and Luo
2021). The operation of these machines requires attention to
the risks, which, combined with fatigue, leads to accidents,
injuries and severe injuries including fatalities. Therefore,
more andmore research efforts have been put into developing
robot systems that are capable of carrying out the sequence
of roof-bolting operations to achieve a high-impact health
and safety intervention for roof-bolter operators (Van Duin
et al. 2013; Schafrik et al. 2022).

The bolting machines have been automated before, but
these modifications are not popular with the community
because autonomous machines are highly restricted in their
usage. They are setups for a single-purpose drilling and bolt-
ing operation, where in most mining and civil construction,
flexible installation is desired.

Figure 6 shows a robot-assisted roof-bolting system con-
structed in our lab (Schafrik et al. 2022). In a roof-bolting
task, the system does following actions step-by-step: (i) drill
a hole in the roof with a drill steel; (ii) remove the drill steel;
(iii) install resin; (iv) install a bolt. To perform these actions
successfully, the roof-bolter operator and the roof bolter need
to collaborate seamlessly. The role of the roof bolter is to drill
the roof and install the resin and the bolt into the roof. The role
of the operator is to pickup thedrill steel, the resin and the bolt
and hand them over to the roof bolter. In our robot-assisted
roof-bolting system,we replace the human roof-bolter opera-

Fig. 6 The roof bolting system

123

https://bit.ly/3tfYOMY
https://bit.ly/3tfYOMY
https://bit.ly/3tfYOMY

Autonomous Robots (2023) 47:1537–1558 1551

tor with an ABB IRB 1600 robot because of its high accuracy
and flexibility.

Industrial robots have been widely deployed in facto-
ries (Nikolaidis and Shah 2012) in isolation from people,
where their tasks can be pre-defined in the form of way-
points. However, underground mine is usually cluttered and
dynamic. For example, human workers who are focused on
other tasks may leave tools around unconsciously. The left
tools and other objects in the environmentwill become obsta-
cles blocking the roof-bolting operation. The robot arm then
has to clear its operation space, i.e., move movable obstacles
out of the way. Moreover, to perform roof-bolting tasks, it is
critical to coordinate the roof bolter and robot arm because
of their different capabilities. On one hand, we need the roof
bolter to drill holes in the roof and install the bolts into the
roof; on the other hand, we need the robot arm to hand bolts,
resins and drill steels over to the roof bolter and rearrange
movable obstacles. To automatically generate manipulation
plans to coordinate the roof bolter and the robot arm, the
planning framework should first compute the occlusion and
reachability information for the roof bolter and the robot
arm (Sec. 4.1) and then generate effectivemanipulation plans
accordingly.

We observe that in each step of the roof-bolting operation
we have a target object whose target configuration is spec-
ified and numerous objects that can be treated as movable
obstacles. By treating the roof bolter as the second robot,
we propose to formulate each step of the roof-bolting oper-
ation as a multi-robot geometric task-and-motion planning
(MR-GTAMP) problem.

6.1 Formulating roof-bolting operation as
MR-GTAMP problems

In the roof-bolting task, we need to move the drill steel, the
resin and the bolt to their target configurations in the roof.
In our application study, we only focus on bolt placement.
Other actions can be formulated as MR-GTAMP problems
similarly. We assume the target configuration of the bolt has
been pre-defined. We formulate an MR-GTAMP problem
where we have two robots, i.e., a roof bolter and an ABB IRB
1600 robot arm. These two robots have different reachability:
the roof bolter can place the bolt into its target configuration,
whereas the robot arm can pick up the bolt from its initial
configuration. Moreover, the robot arm can reach most of the
movable objects in the environment.

The reachability of the roof bolter and the robot arm can be
computed by calling motion planning algorithms (Sec. 4.1)
and can be easily encoded using collaborative manipulation
task graphs (CMTGs) (Sec. 4.2.1). We will then use our
proposed framework to compute executable task-and-motion
plans for the roof bolter and the robot arm that account for
their different manipulation capabilities.

6.2 Two example scenarios

In our application study, we run our proposed planner for
two example scenarios. We show the environment setups in
simulation and the built CMTGs (Figs. 7,8,9,10). We denote
the ABB robot arm and the roof bolter as R1 and R2. For
each action, we denote the object that is moved as Mi , the
grasp that is used by robot Rk as gMi ,Rk and the region to
which the object is moved as Re j .
Example scenario 1. In the first example scenario, we have
the bolt as a target object (object M1) and three movable
obstacles (objectsM2,M3,M4) (Fig. 7). TheCMTGformov-
ing object M1 is shown in Fig. 8 (left). The CMTG shows
that to move object M1, the ABB robot arm and the roof
bolter have to perform a handover action. Object M4 blocks
the ABB robot arm from picking up object M1 and object M3

blocks the ABB robot arm from picking up object M4. Given
the CMTG, we can generate a task skeleton. During ground-
ing (Sec. 4.2.2) the generated task skeleton, the planner finds
that object M2 blocks the handover action between the ABB
robot arm and the roof bolter. The planner then generates a
new CMTG to move object M2 (Fig. 8 (right)).
Example scenario 2. In the second example scenario, we
have a target object, bolt (object M1) and twomovable obsta-
cles (objects M2,M3) (Fig. 9). The CMTG for moving object
M1 is shown in Fig. 10 (left). The CMTG shows that to move

Object

Object

Object

Object

M1

M2 M3

M4

Fig. 7 Example scenario 1 in the simulation

Fig. 8 Generated CMTGs for example scenario 1. R1 and R2 represent
the ABB robot arm and the roof bolter

123

1552 Autonomous Robots (2023) 47:1537–1558

Fig. 9 Example scenario 2 in the simulation

Fig. 10 GeneratedCMTGs for example scenario 2. R1 and R2 represent
the ABB robot arm and the roof bolter

object M1, the ABB robot arm and the roof bolter have to
perform a handover action. Object M2 blocks the roof bolter
from placing object M1 to its target configuration. During
grounding (Sec. 4.2.2) the generated task skeleton based on
the CMTG, the planner finds that object M3 blocks the han-
dover action between the ABB robot arm and the roof bolter.
The planner then generates a new CMTG to move object M3

(Fig. 10 (right)).

6.3 Planning and execution details

Planning. We conduct 5 trials on an AMD Ryzen Thread-
ripper PRO 3995WX Processor with a memory of 64GB for
each scenario. The average planning time for example sce-
nario 1 and example scenario 2 are 144.1(±21.5) seconds and
100.8(±15.4) seconds. We observe that most of the plan-
ning time is spent on task skeleton grounding (Sec. 4.2.2)
where motion planning is extensively called. The average
planning time spent on motion planning for example sce-
nario 1 and example scenario 2 are 143.4(±21.5) seconds and
100.2(±15.4) seconds. This is because it is challenging to
plan collision-free motion trajectories to move large objects
such as the bolt and drill steel in a confinedworkspace.On the
other hand, it only takes 0.6(±0.0) seconds and 0.6(±0.0)
seconds on average to compute task skeletons (Sec. 4.2.1)
for example scenario 1 and example scenario 2.
Execution. In Figs. 11 and 12 we show the execution of
the generated plans in simulation and real-world. We include

videos of scenarios 1 and 2 in the supplemental material.
The execution time of the generated plans for example sce-
nario 1 and example scenario 2 are 250.0 seconds and 270.0
seconds. To execute the planned motion trajectories on the
ABB robot, we first manually smooth the motion trajectories
by downsampling the waypoints of the motion trajectories.
We then automatically generate ABB robot instructions in
RAPID (Robotics 2007) from the waypoints. Each waypoint
is a robot configuration defined in theABB robot’s joint space
and is as an argument passed toMoveJ command in RAPID.

7 Discussion

In this paper, we presented a framework for MR-GTAMP
problems by proposing a novel MIP formulation to utilize
information about the collaborativemanipulation capabilities
of the individual robots to generate promising task skeletons
for guiding the planning search. We proposed an efficient
task-skeleton grounding algorithm inspired by the previ-
ous work on MAMO (Stilman et al. 2007). The proposed
components are integrated via a Monte-Carlo Tree Search
exploration strategy that searches for effective task-and-
motion plans. We showed that our framework outperforms
two baselines on two challenging MR-GTAMP problems
with respect to the planning time and success rates, can gen-
erate effective plans with respect to the resulting plan length
and the number of objects moved, and can scale up to large
problem instances. We also showed that our framework can
be applied in the roof-bolting operation for undergroundmin-
ing, where a robotic arm coordinates with an autonomous
roof bolter.
Limitations. Our work is limited in many ways. In our
work, we consider only monotone instances of the MR-
GTAMP problem, where each object is moved only once.
This assumption limits us from solving problem instances
that require moving one object multiple times (Kim and Shi-
manuki 2020) such asTower ofHanoi, object swapping tasks.
We leave the extension to non-monotone problem instances
for future work. Our framework also pre-defines handover
regions for different robots to compute collaborative manip-
ulation information (Sec. 4.1). This approach may be limited
for dynamic environments such as human homes, thus we
plan to incorporate a handover region searching process in
the task-skeleton grounding component (Sec. 4.2.2) in the
future. We have also assumed full observability of the scene
and therefore cannot handle uncertainties, noise in robot per-
ception (Muguira-Iturralde et al. 2022). We plan to account
for sensing limitations in the future (Nikolaidis et al. 2009,
2016). Currently, our approach aims to generate plans with
short plan lengths and small numbers of moved objects.
However, we do not consider the length of the resulting
motion trajectories and the corresponding robot execution

123

Autonomous Robots (2023) 47:1537–1558 1553

Fig. 11 Frames showing the
execution of the generated plan
for example scenario 1 in both
simulation (Left) and real-world
(Right)

time (Chen et al. 2022; N et al. 2023), thus we plan to account
for these evaluation metrics in the future.

Future work also includes using learning to improve the
planning efficiency (Kimet al. 2022) and extending the devel-

oped techniques to more general MR-TAMP problems (Pan
et al. 2021) and more diverse environments (Fontaine et al.
2021; Zhang et al. 2020).

123

1554 Autonomous Robots (2023) 47:1537–1558

Fig. 12 Frames showing the
execution of the generated plan
for example scenario 2 in both
simulation (Left) and real-world
(Right)

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-023-10148-
y.

Acknowledgements This work was supported by the National Science
Foundation NRI # 2024936 and the Alpha Foundation for the Improve-
ment of Mine Safety and Health # AFC820-68.

Author Contributions HZ led the algorithm development, experiments,
and paper editing; SC and JL helped with the algorithm development
and paper editing; JZ and PK helped with the experiments; SK, ZA, SS
and SN supervised the project.

Funding Open access funding provided by SCELC, Statewide Califor-
nia Electronic Library Consortium

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

123

https://doi.org/10.1007/s10514-023-10148-y
https://doi.org/10.1007/s10514-023-10148-y

Autonomous Robots (2023) 47:1537–1558 1555

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Ahn, J., Kim, C., & Nam, C. (2021). Coordination of two robotic
manipulators for object retrieval in clutter. arXiv preprint
arXiv:2109.15220

Behrens, J. K., Stepanova, K., & Babuska, R. (2020) Simultaneous
task allocation and motion scheduling for complex tasks exe-
cuted by multiple robots. In IEEE international conference on
robotics and automation (pp. 11443–11449). https://doi.org/10.
1109/ICRA40945.2020.9197103

Bidot, J., Karlsson, L., Lagriffoul, F., & Saffiotti, A. (2017). Geometric
backtracking for combined task and motion planning in robotic
systems. Artificial Intelligence, 247, 229–265.

Chen, J., Li, J., Huang, Y., Garrett, C., Sun, D., Fan, C., Hofmann, A.,
Mueller, C., Koenig, S., & Williams, B. C. (2022). Cooperative
task and motion planning for multi-arm assembly systems. arXiv
preprint arXiv:2203.02475 (2022)

Coumans, E., & Bai, Y. (2016–2019). PyBullet, a Python module
for physics simulation for games, robotics and machine learning.
http://pybullet.org

Cplex, I. I. (2009). V12. 1: User’s manual for cplex. International Busi-
ness Machines Corporation, 46(53), 157.

Danielczuk, M., Kurenkov, A., Balakrishna, A., Matl, M., Wang,
D., Martín-Martín, R., Garg, A., Savarese, S., & Goldberg, K.
Mechanical search: Multi-step retrieval of a target object occluded
by clutter. In IEEE international conference on robotics and
automation (pp. 1614–1621). https://doi.org/10.1109/ICRA.2019.
8794143

Danna, E., Fenelon, M., Gu, Z.,& Wunderling, R. (2007) Generating
multiple solutions for mixed integer programming problems. In
Integer programming and combinatorial optimization (pp. 280–
294)

Dantam, N. T., Kingston, Z. K., Chaudhuri, S., & Kavraki, L. E. (2018).
An incremental constraint-based framework for task and motion
planning. IJRR, 37(10), 1134–1151.

Diankov, R. (2010) Automated construction of robotic manipulation
programs. PhD thesis, Carnegie Mellon University

Fontaine, M., Hsu, Y.-C., Zhang, Y., Tjanaka, B., & Nikolaidis, S.
(2021). On the Importance of Environments in Human-Robot
Coordination. In Proceedings of robotics: Science and systems,
virtual. https://doi.org/10.15607/RSS.2021.XVII.038

Garrett, C. R., Lozano-Pérez, T., &Kaelbling, L. P. (2020). Pddlstream:
Integrating symbolic planners and blackbox samplers via opti-
mistic adaptive planning. In ICAPS (vol. 30, pp. 440–448)

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kael-
bling, L. P., & Lozano-Pérez, T. (2021). Integrated task andmotion
planning. Annual Review of Control, Robotics, and Autonomous
Systems, 4(1), 265–293. https://doi.org/10.1146/annurev-control-
091420-084139

Griva, I., Nash, S. G., & Sofer, A. (2009). Linear and nonlinear opti-
mization (Vol. 108). Philadelphia, Pennsylvania, USA: Siam.

Hartmann, V. N., Orthey, A., Driess, D., Oguz, O. S., & Toussaint,
M. (2021). Long-horizon multi-robot rearrangement planning for
construction assembly. arXiv preprint arXiv:2106.02489 (2021)

Hauser, K. (2013). Minimum constraint displacement motion planning.
In Robotics: science and systems. https://doi.org/10.15607/RSS.
2013.IX.017

Hoffmann, J. (2001). Ff: The fast-forward planning system. AI Maga-
zine, 22, 57–62.

Hun Cheong, S., Cho, B. Y., Lee, J., Kim, C., & Nam, C. (2020). Where
to relocate?: Object rearrangement inside cluttered and confined
environments for roboticmanipulation. In IEEE international con-
ference on robotics and automation (pp. 7791–7797). https://doi.
org/10.1109/ICRA40945.2020.9197485

Jiang,H.,&Luo,Y. (2021).Development of a roof bolter drilling control
process to reduce the generation of respirable dust. International
Journal of Coal Science & Technology, 8(2), 199–204.

Khodeir, M., Agro, B., & Shkurti, F. (2023). Learning to search in task
and motion planning with streams. IEEE Robotics and Automa-
tion Letters, 8(4), 1983–1990. https://doi.org/10.1109/LRA.2023.
3242201

Kim, B., & Shimanuki, L. (2020). Learning value functions with rela-
tional state representations for guiding task-and-motion planning.
In Conference on robot learning (vol. 100, pp. 955–968)

Kim, B., Kaelbling, L. P., & Lozano-Pérez, T. (2019). Adversar-
ial actor-critic method for task and motion planning problems
using planning experience. In AAAI conference on artificial intel-
ligence (vol. 33, pp. 8017–8024). https://doi.org/10.1609/aaai.
v33i01.33018017

Kim, B., Shimanuki, L., Kaelbling, L. P., & Lozano-Pérez, T.
(2022). Representation, learning, and planning algorithms for
geometric task and motion planning. The International Journal
of Robotics Research, 41(2), 210–231. https://doi.org/10.1177/
02783649211038280

King, J. E., Cognetti, M., & Srinivasa, S. S. (2016). Rearrangement
planning using object-centric and robot-centric action spaces. In
IEEE international conference on robotics and automation (pp.
3940–3947). https://doi.org/10.1109/ICRA.2016.7487583

Kogo, T., Takaya, K., & Oyama, H. (2021) Fast milp-based task and
motion planning for pick-and-place with hard/soft constraints of
collision-free route. In 2021 IEEE SMC (pp. 1020–1027). IEEE

Krontiris, A., & Bekris, K. E. (2016). Efficiently solving general
rearrangement tasks: A fast extension primitive for an incre-
mental sampling-based planner. In ieee international conference
on robotics and automation (pp. 3924–3931). https://doi.org/10.
1109/ICRA.2016.7487581

Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., & Karlsson, L.
(2014). Efficiently combining task and motion planning using
geometric constraints. The International Journal of Robotics
Research, 33(14), 1726–1747.

LaValle, S. M. (2006). Planning algorithms. Cambridge, United King-
dom: Cambridge University Press.

Mansouri, M., Pecora, F., & Schüller, P. (2021). Combining task and
motion planning: Challenges and guidelines. Frontiers in Robotics
and AI. https://doi.org/10.3389/frobt.2021.637888

Mark, C. (2002). The introduction of roof bolting to US underground
coal mines (1948-1960): a cautionary tale. In Proceedgins of the
21st international conference on ground control in mining (pp.
150–160)

Muguira-Iturralde, J., Curtis, A., Du, Y., Kaelbling, L. P., & Lozano-
Pérez, T. (2022). Visibility-aware navigation among movable
obstacles. 2023 IEEE ICRA

N., H. V., & Marc, T. (2023). Towards computing low-makespan solu-
tions for multi-arm multi-task planning problems. arXiv preprint
arXiv:2305.17527

Nam, C., Lee, J., Hun Cheong, S., Cho, B. Y., & Kim, C. Fast and
resilient manipulation planning for target retrieval in clutter. In

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2109.15220
https://doi.org/10.1109/ICRA40945.2020.9197103
https://doi.org/10.1109/ICRA40945.2020.9197103
http://arxiv.org/abs/2203.02475
http://pybullet.org
https://doi.org/10.1109/ICRA.2019.8794143
https://doi.org/10.1109/ICRA.2019.8794143
https://doi.org/10.15607/RSS.2021.XVII.038
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1146/annurev-control-091420-084139
http://arxiv.org/abs/2106.02489
https://doi.org/10.15607/RSS.2013.IX.017
https://doi.org/10.15607/RSS.2013.IX.017
https://doi.org/10.1109/ICRA40945.2020.9197485
https://doi.org/10.1109/ICRA40945.2020.9197485
https://doi.org/10.1109/LRA.2023.3242201
https://doi.org/10.1109/LRA.2023.3242201
https://doi.org/10.1609/aaai.v33i01.33018017
https://doi.org/10.1609/aaai.v33i01.33018017
https://doi.org/10.1177/02783649211038280
https://doi.org/10.1177/02783649211038280
https://doi.org/10.1109/ICRA.2016.7487583
https://doi.org/10.1109/ICRA.2016.7487581
https://doi.org/10.1109/ICRA.2016.7487581
https://doi.org/10.3389/frobt.2021.637888
http://arxiv.org/abs/2305.17527

1556 Autonomous Robots (2023) 47:1537–1558

IEEE international conference on robotics and automation (pp.
3777–3783). https://doi.org/10.1109/ICRA40945.2020.9196652

Nikolaidis, S., & Shah, J. (2012) Human-robot teaming using shared
mentalmodels. InProceedings of IEEE/ACM international confer-
ence onhuman-robot interaction,workshoponhuman-agent-robot
teamwork

Nikolaidis, S., Dragan, A., & Srinivasa, S. (2016). Viewpoint-based
legibility optimization. In ACM/IEEE international conference on
human-robot interaction (pp. 271–278). https://doi.org/10.1109/
HRI.2016.7451762

Nikolaidis, S., Ueda, R., Hayashi, A., & Arai, T. (2009). Optimal cam-
era placement considering mobile robot trajectory. In 2008 IEEE
international conference on robotics and biomimetics (pp. 1393–
1396). IEEE

Pan, T., Wells, A. M., Shome, R., & Kavraki, L. E. (2021). A general
task and motion planning framework for multiple manipulators. In
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (pp. 3168–3174). https://doi.org/10.1109/IROS51168.2021.
9636119

Peng, S. S., & Tang, D. (1984). Roof bolting in underground mining: A
state-of-the-art review. International Journal of Mining Engineer-
ing, 2(1), 1–42.

Quispe, A. H., Amor, H. B., & Christensen, H. I. (2016). Combining
arm and hand metrics for sensible grasp selection. In IEEE inter-
national conference on automation science and engineering (pp.
1170–1176). https://doi.org/10.1109/COASE.2016.7743537

Ren, T., Chalvatzaki, G., & Peters, J. (2021). Extended tree search for
robot task and motion planning. arXiv preprint arXiv:2103.05456

Robotics, A. (2007).Operating manual robotstudio. Sweden: Västerås.
Rodríguez, C., & Suárez, R. (2016). Combining motion planning and

task assignment for a dual-arm system. In IEEE/RSJ international
conference on intelligent robots and systems (pp. 4238–4243).
https://doi.org/10.1109/IROS.2016.7759624

Schafrik, S., Kolapo, P., & Agioutantis, Z. (2022) Development of an
automated roof bolting machine for underground coal mines. In
Proceedings of annual SOMP conference, Namibia

Shome, R., Solovey, K., Yu, J., Bekris, K., & Halperin, D. (2021).
Fast, high-quality two-arm rearrangement in synchronous, mono-
tone tabletop setups. IEEE Transactions on Automation Science
and Engineering, 18(3), 888–901. https://doi.org/10.1109/TASE.
2021.3055144

Silver, T., Chitnis, R., Curtis, A., Tenenbaum, J., Lozano-Perez, T., &
Kaelbling, L. P. (2020) Planning with learned object importance
in large problem instances using graph neural networks. arXiv
preprint arXiv:2009.05613

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.,
Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T.,
& Hassabis, D. (2017). Mastering the game of go without human
knowledge. Nature, 550, 354.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., & Abbeel, P.
(2014). Combined task and motion planning through an extensible
planner-independent interface layer. In 2014 IEEE ICRA (pp. 639–
646). IEEE

Stilman, M., Schamburek, J.-U., Kuffner, J., & Asfour, T. (2007).
Manipulation planning among movable obstacles. In IEEE inter-
national conference on robotics and automation (pp. 3327–3332).
https://doi.org/10.1109/ROBOT.2007.363986

Takano, R., Oyama, H., & Yamakita, M. (2021). Continuous
optimization-based task and motion planning with signal tempo-
ral logic specifications for sequential manipulation. In 2021 IEEE
international conference on robotics and automation (ICRA) (pp.
8409–8415). https://doi.org/10.1109/ICRA48506.2021.9561209

Tay, M., & Ngoi, B. (1996). Optimising robot workcell layout. The
International Journal of AdvancedManufacturing Technology, 12,
377–385.

Toussaint,M. (2015). Logic-geometric programming: An optimization-
based approach to combined task andmotion planning. InProceed-
ings of the 24th international conference on artificial intelligence.
IJCAI’15 (pp. 1930–1936). AAAI Press.

Toussaint, M., & Lopes, M. (2017). Multi-bound tree search for logic-
geometric programming in cooperative manipulation domains. In
2017 IEEE ICRA (pp. 4044–4051). IEEE

Toussaint, M., & Lopes, M. (2017). Multi-bound tree search for logic-
geometric programming in cooperative manipulation domains. In
IEEE international conference on robotics and automation (pp.
4044–4051). https://doi.org/10.1109/ICRA.2017.7989464

Van Duin, S., Meers, L., Donnelly, P., & Oxley, I. (2013). Automated
bolting and meshing on a continuous miner for roadway devel-
opment. International Journal of Mining Science and Technology,
23(1), 55–61.

Yang, Z., Garrett, C. R., & Fox, D. (2022). Sequence-based plan fea-
sibility prediction for efficient task and motion planning. arXiv
preprint arXiv:2211.01576

Zhang, H., Chan, S.-H., Zhong, J., Li, J., Koenig, S., & Nikolaidis,
S. (2022). A mip-based approach for multi-robot geometric task-
and-motion planning. In 2022 IEEE 18th international conference
on automation science and engineering (CASE) (pp. 2102–2109).
IEEE

Zhang, H., Fontaine, M., Hoover, A., Togelius, J., Dilkina, B., & Niko-
laidis, S. (2020). Video game level repair via mixed integer linear
programming. Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 16(1), 151–
158.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Hejia Zhang received a B.E.
in Bioengineering from Zhejiang
University in 2017 and a M.S.
in Computer Science from Uni-
versity of Southern California in
2019. He is interested in Robotics,
Artificial Intelligence, and
Human-Robot Interaction.

Shao-Hung Chan received a B.S.
in Electrical Engineering from
National Cheng Kung University
in 2017 and an M.S. in Elec-
trical Engineering from National
Taiwan University in 2019. He
is interested in Artificial Intelli-
gence, Heuristic Search, and
Robotics. He received a USC
Annenberg Graduate Fellowship
in 2019 and a Ph.D. Sandwich
Program Fellowship at Ben-Gurion
University of the Negev in 2021.

123

https://doi.org/10.1109/ICRA40945.2020.9196652
https://doi.org/10.1109/HRI.2016.7451762
https://doi.org/10.1109/HRI.2016.7451762
https://doi.org/10.1109/IROS51168.2021.9636119
https://doi.org/10.1109/IROS51168.2021.9636119
https://doi.org/10.1109/COASE.2016.7743537
http://arxiv.org/abs/2103.05456
https://doi.org/10.1109/IROS.2016.7759624
https://doi.org/10.1109/TASE.2021.3055144
https://doi.org/10.1109/TASE.2021.3055144
http://arxiv.org/abs/2009.05613
https://doi.org/10.1109/ROBOT.2007.363986
https://doi.org/10.1109/ICRA48506.2021.9561209
https://doi.org/10.1109/ICRA.2017.7989464
http://arxiv.org/abs/2211.01576

Autonomous Robots (2023) 47:1537–1558 1557

Jie Zhong received a B.S. in
Mechanical Engineering from
Xi’an Jiaotong University in 2020
and an M.S. in Mechanical Engi-
neering from University of South-
ern California in 2023. He is inter-
ested in artificial intelligence,
mechatronics, and robotics.

Jiaoyang Li is an assistant pro-
fessor in the Robotics Institute at
Carnegie Mellon University. Her
research focuses on multi-robot
planning and coordination. She
obtained a B.Eng. degree in
Automation from Tsinghua Uni-
versity, China in 2017 and a Ph.D.
degree in Computer Science from
the University of Southern Cali-
fornia, USA in 2022.

Peter Kolapo is a passionate and
well-trained mining engineer with
extensive expertise and enthusi-
asm for mining automation, rock
engineering and geomechanics.
Peter Kolapo is a PhD candidate
in the Department of Engineer-
ing at the University of Kentucky,
USA. Peter holds a Bachelor of
Mining Engineering from the Fed-
eral University of Technology
Akure, Nigeria and completed his
master’s degree in mining engi-
neering at the University of Wit-
watersrand, where he specialized

in rock mechanics and engineering. Peter’s current research entails
developing an automated roof bolting machine for underground min-
ing and tunneling operations. Peter has experience in testing the
accuracy of terrestrial laser scanning technologies, monitoring under-
ground rock mass movement, measuring in-situ stress at a deep-level
underground gold mine, shaft pillar stability analysis, coring of rock
and laboratory testing of rock samples all in South Africa. Peter has
a broad engineering background, covering the automation of mining
equipment, ground control technologies, underground stability analy-
sis, numerical modeling, rock drilling efficiency, laboratory testing of
rock samples, in-situ stress measurement, closure rate in underground
excavation, support design and pillar design.

Sven Koenig is Dean’s Profes-
sor of Computer Science at the
University of Southern Califor-
nia. Most of his research cen-
ters around techniques for deci-
sion making (planning and learn-
ing) that enable single situated
agents (such as robots or decision-
support systems) and teams of
agents to act intelligently in their
environments and exhibit
goal-directed behavior in real-time,
even if they have only incomplete
knowledge of their environment,
imperfect abilities to manipulate

it, limited or noisy perception or insufficient reasoning speed. Sven is
a fellow of the Association for the Advancement of Artificial Intel-
ligence (AAAI), the Association for Computing Machinery (ACM),
the Institute of Electrical and Electronics Engineers (IEEE), and
the American Association for the Advancement of Science (AAAS).
Additional information about Sven can be found on his webpages:
http://idm-lab.org.

Zach Agioutantis is the Min-
ing Engineering Foundation Pro-
fessor and Chair of the Depart-
ment of Mining Engineering at
the University of Kentucky. Prior
to that, he was a Professor and
the Director of the Rock Mechan-
ics Laboratory at the Technical
University of Crete in Greece for
over 25 years. Over the years, he
has taught several mining engi-
neering courses at the undergrad-
uate and graduate levels. He has
authored and co-authored more
than 80 peer-reviewed journal

papers and more than 300 conference papers on subjects related to
subsidence, applied and theoretical rock mechanics, soil mechanics,
slope stability, computer applications in mining and geotechnical engi-
neering, mining systems and mining systems simulation, as well as
sustainability in mining operations.

Steven Schafrik is an Associate
Professor in the Department of
Mining Engineering at the Uni-
versity of Kentucky. He has exten-
sive research experience in the
application of computer systems
in mining engineering, mine ven-
tilation, communication and nav-
igation in underground environ-
ments, virtual reality systems to
train miners, and numerous oth-
ers. He has led multiple teams on
research projects on mine equip-
ment automation, underground
mine communications, and dust

control and scrubbing systems. Several government agencies have
funded his research in addition to private sector entities. He is active
in professional societies, including the Society for Mining, Metallurgy,
and Exploration (SME) where he holds several administrative posi-
tions. He is the advisor to the University of Kentucky mine rescue
team.

123

http://idm-lab.org

1558 Autonomous Robots (2023) 47:1537–1558

Stefanos Nikolaidis is an Assistant
Professor of Computer Science at
the University of Southern Cali-
fornia. His research draws upon
expertise on artificial intelligence,
procedural content generation and
quality diversity optimization and
leads to end-to-end solutions that
enable deployed robotic systems
to act robustly when interacting
with people in practical, real-world
applications. Stefanos completed
his PhD at CMU’s Robotics Insti-
tute and received an MS from
MIT, a MEng from the University

of Tokyo and a BS from the National Technical University of Athens.
Stefanos’ research has been recognized with an NSF CAREER award,
an oral presentation at NeurIPS and best paper awards and nomina-
tions from HRI, IROS, and ISR.

123

	Multi-robot geometric task-and-motion planning for collaborative manipulation tasks
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Our approach
	4.1 Computing collaborative manipulation information
	4.2 Searching for task-and-motion plans
	4.2.1 Key component 1: generating promising task skeletons
	4.2.2 Key component 2: task-skeleton grounding

	5 Experiments
	5.1 Baselines
	5.2 Benchmark domains
	5.3 Results

	6 Application study: roof bolting
	6.1 Formulating roof-bolting operation as MR-GTAMP problems
	6.2 Two example scenarios
	6.3 Planning and execution details

	7 Discussion
	Acknowledgements
	References

