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Abstract— In this paper, we propose a novel system 

architecture called multi-layer environmental affordance map 

for social and service companion robots. Based on this 

architecture, robots can organize the perception and inference 

information efficiently and generate social friendly navigation 

strategies. In other words, robots are able to strengthen their 

perception and inference abilities to interact with domestic 

environment and users under our efficient framework. The 

main feature of this architecture is that the relations between 

layers can be viewed as affordances to improve the accuracy and 

the robustness of the detection and inference. The results show 

that our architecture achieves robust indoor localization, scene 

localization, human event detection and socially friendly 

navigation in real time under limited computational resource. 

I. INTRODUCTION 

In recent years, due to the growth of the elderly population, 
the use of social companion and service robots has received 
increasing attention [1][2]. For the application of these types 
of robot, the basic and important capabilities are the 
localization and navigation. On top of that, the ability of 
perception is also critical. As for normal mobile robots, it may 
be satisfactory for simply navigating safely and robustly from 
one place to another. Nevertheless, social robots, especially 
designing for household usage, should take human interactions 
into consideration while moving in the indoor environment [3]. 
For social robots that connect with people, it is practical for 
them to not only navigate safe and sound in the domestic 
environment, but also autonomously take human status into 
considerations while making decisions in real time [4]. 
Therefore, how a robot can store its inferences and perceive 
human-beings based on its past knowledge and current 
observation in real time become crucial and challenging. 
Furthermore, efficient high-level path planning for mobile 
robots that combines sensor perception and human-robot 
interaction (HRI) is required for robots in our daily lives [5].  

Although a social robot may navigate smoothly using 
heuristic searching and avoid obstacles with local path 
planning methods given, it is still challenging to move 
smoothly in a human living environment. One of the main 
reasons is that the robot tends to ignore human status while 
moving, leading to unpleasant user experience. In other words, 
while navigating in the human social environment, a social 

robot should take object detection, scene recognition, and 
human activities into consideration instead of planning merely 
with heuristic algorithms as A* [6]. Other than “social 
navigation” that takes human-beings more than dynamic 
obstacles in [7] and [8], here we focus more on path planning 
and decision making for “social friendly navigation.” As far as 
we concern, it is unsuitable for robot to over-interfere human. 
For example, the robot should avoid crossing the living room 
while there are people watching television inside, as shown in 
Fig. 1(a). To deal with such problem, we purpose a multi-layer 
environmental affordance map architecture that combines 
visual perceptions and human reactions while processing 
autonomous mobile robot navigation in the household 
surroundings to achieve social friendly navigation in complex 
real world environment. In addition, the perception results can 
be stored in our system during the Simultaneous Localization 
and Mapping (SLAM) procedure and recalled efficiently in the 
navigation procedure. That is to say, the robot can build the 
static map and memorize the inferences based on the detected 
objects in real time. On top of that, these inference results can 
be modified dynamically according to the new detection 
outcomes. 

In this paper, we consider the affordance concept [9] in our 
system to illustrate the semantics and inference outcomes. For 
instance, a sofa can be taken as a sitting spot for a person to 
watch television. Since the affordances relate the agent’s 
actions to their effects on the surrounding objects, it can be 
used as the prior knowledge so that the robots can have 
stronger inference ability. In [10], the authors proposed a 
hierarchical probabilistic representation of space by using a 
global topological representation of places with object graph. 
Nonetheless, the work preset the regions for scene recognition 
and may failed when the indoor environment is an open space 
without walls. On the contrary, the scene layer in the proposed 
multi-layer environmental affordance map provides regions 
boundaries such that the robot can recognize the size of the 
scene even in the open area. In [11], object affordance is used 
to predict human activities. Nevertheless, the work does not 
provide a mapping concept like our work to localize objects, 
scene, and human activities on a static map. In [12], the authors 
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(a) (b) 
Fig. 1 Two scenarios of robot navigation using our proposed multi-layer 
environmental affordance map architecture. (a) shows that the robot is 

moving to the office based on user command while avoiding interruption 

of person watching television. (b) is the case that robot recognizing 
human’s engagement and moving toward him. 
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proposed a topological mapping using object detection as well 
as it affordances. However, topological mapping may lead to 
limited navigation feasibilities. In this paper, we implement 
our system on the basis of grid map, which is more 
comprehensive for robot to navigate in the domestic 
environment. To sum up, the proposed architecture 
strengthens the perception and inference abilities of the service 
and social companion robots such that they can interact with 
environment and users under an efficient framework. In 
comparison to robot equipped with merely low-level heuristic 
planning algorithms, our system is more capable of human-
involved task handling. It is worth mentioning that the 
proposed architecture utilizes computational resource 
containing only one GPU in real time, which is suitable for 
household usage.  

II. SYSTEM OVERVIEW 

The multi-layer environmental affordance map is shown in 
Fig. 2. The feature of this architecture is that the relations 
between layers can be used as affordance to improve the 
accuracy and the robustness of the detection. With the 
proposed architecture, the calculation can be reduced so that 
the robot can generate suitable navigation strategies in real 
time based on its previous observations efficiently. 

We design four layers in the architecture which are static 
map layer, object layer, scene layer, and event layer. As the 
affordances relate the agent’s actions to their effects on the 
surrounding objects, they can be provided to robots as the prior 
knowledge so that the robots can have stronger inference 
ability by relating the affordances to the environment. In our 
system, top layers can be constructed while obtaining 
affordance from low layers. With the help of these relations 
between layers, the decisions made by the robot can be more 
efficient and robust. 

The flow of our system is described as follows. First, during 
the mapping process, the robot not only builds static map layer 
using Simultaneous Localization and Mapping techniques, but 
also detects and localizes objects in the object layer. Then, the 
scene layer is built through comparing the distances and 
affordances provided by the object layer, and forms regions of 
the indoor environment. In addition, when robot detects people, 
it can classify their actions in the event layer based on the 
skeleton detections, the surrounding scene and objects such 
that the accuracy is improved. As for the navigation process, 
given a destination from the user, the robot can make the 
decision of a suitable path by recalling the information from 
our system and current observations, which is more user-
friendly comparing to the shortest path that might interrupt 
outliers. 

III. METHODOLOGY 

This section introduces the methodology of each layer, 
which includes static map layer, object layer, scene layer, and 
event layer. After that, social friendly navigation strategies 
will be generated based on the proposed architecture. 

A.  Static Map Layer 

To increase the robustness of the indoor localization ability, 
a methodology for SLAM fusion was proposed in our previous 
work [13]. The architecture can utilize different and relative 
weak sensors to achieve robust indoor localization. Thus, with 

the help of the current SLAM and our localization methods in 
[13], the robot can perform localization and navigation safely. 

B. Object Layer 

 In order to detect and localize objects on the grid map, we 

apply the object layer to the system. We use a deep learning 

method to the object layer for the object detection called 

YOLOv3 [14]. Besides, the depth camera and the pinhole 

model are used to find the position in the 3-dimensional space. 

For the purpose of achieving high efficiency and low 

computational cost, object segmentation based on depth 

image is adopted such that the object in the bounding box can 

be segmented out from the background. Combining with the 

segmented objects and the 3 dimensional space point cloud, 

the object position in the space can be determined. While the 

localization of robot can be obtained from the static map layer, 

the object positions in the space can then be correlated 

through the use of coordinate transformation. 

In this paper, the experiments are carried out with the 

humanoid robot Pepper developed by SoftBank Group, Corp. 

[15], which has 2 degree of freedom in the neck (θhead_pitch and 

θhead_yaw) and 0.15 m camera offset. Therefore, a 

transformation relation corresponding to these two degrees of 

freedom needs to be applied: 
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where the rotation matrices are 
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camera_offset = 0.15 m 
 

 Finally, with the localization provided in the static map 
layer, the object coordinates can be further transformed with 
the transformation matrix from the robot position, including 
displacement and yaw, under global coordination 

 
yawdispdisp yx ,, : 

 

Fig. 2. Architecture of multi-layer environmental affordance map. 
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 C. Scene Layer 

The purpose of scene layer is to formulate the region and 
recognize the specific scene based on the information from the 
object layer. The proposed method is based on the fact that 
human knowledge (affordance) can be applied to help the 
robot infer the scene efficiently. For instance, a computer is 
likely to be put in the bedroom or shouldn’t appear in the 
bedroom; a sofa can afford sleeping or only for sitting, which 
depend on the users’ preferences.  On the other hand, the prior 
knowledge (human preference/affordance) can lead the robot 
to think differently flexibly. In this paper, the scene inference 
is based on the object map so that not only the scene can be 
inferred but also its location can be realized. The connection 
among static map, object map and scene map can help the 
robot realize where the scenes and objects are in this 
environment, which improves the navigation strategy 
afterwards. 

After knowing where the objects are spread in the 
environment from the previous object layer, one can partition 
the environment into regions according to the location of the 
objects. This system simply uses a threshold distance to 
separate the regions, so that the hallway (where is lack of 
objects) can be isolated. With the presented method, the 
relation between a scene and the static map can then be 
established. Algorithm 1 shows the pseudo code for the 
process of separating the objects into regions given the 2D 
object map. There are two steps in the program, namely, 
“group the objects” and “merge the nearby groups”. The 
location of a scene depends on the inference from objects, and 
therefore, it is necessary to generate the biggest possible region 
when considering one of the separated groups of objects. We 
first sort a group of objects in a counter-clockwise order and 

tries to find the largest convex shape that can be produced by 
the connection of the objects. The reason we concern the shape 
as convex is to avoid sharp angles while encircling the scene 
region. Then, the region will further be expanded considering 
the volume of those objects. The separation example is shown 
in Fig. 3. 

While the object detection method detects only limited 

classes of object, the robot may have difficulty to recognize 

all objects in the environment. However, with the help of 

affordance, some objects are speculated to appear while some 

objects have already been detected. For instance in Fig. 4, 

when a bowl is recognized, a cup, a spoon, a fork, and a bottle 

may have some probabilities to appear at the same time since 

they have similar eating and drinking functionalities. These 

probabilities will then be calculated from the given affordance. 

In this paper, reviewing the target of the present thesis focuses, 

there are 18 affordances, which are “pourable”, “be able to sit 

on”, “can sustain drinks”, “can be used to cut”, “supportable”, 

“storable”, “dining usage”, “for entertainment”, “for 

decoration”, “for bedding”, “office using”, “bath using”, “for 

pet”, “for cuisine”, “edible”, “reclinable”, “for dressing”, and 

“for toilet”. 
 

While the robot has to know the categories of objects under 
specific scene, the information should be pre-defined. The 
ways of constructing a knowledge to store such information in 
the present thesis are two steps: (1) reviewing the object 
categories that YOLOv3 (pre-train model) has since the 
property specifies the detection ability the robot possesses, and 
then categorizing them into possible scenes; (2) searching the 
suggested or possible furniture which is not able to be 
recognized by the robot under the specific scenes. With the 
presence of affordance provided by users, even though there 
are some objects which cannot be recognized by the robot, they 
are still be speculated to exist with some possibility, which 

Algorithm 1: Separate Object with Distance Threshold 

1.  Input: 2D object map 

2.  Initialize: storages for grouped objects G = 𝝓 
3.         .        distance threshold Dthres 

      // group the objects  
4.  For object in 2D object map: 

5.      If dis(object, any object in Gi) < Dthres:    (Gi  ∈ G) 
6.          Store object in to Gi 

7.      Else: 

8.          Generate a new group Gn+1 (n is the number of existing 
group) 

      // merge the nearby groups 

9.  Calculate the mean position of each group M. 

10.  For Mi and Mj (i j, i<j) in M: 

11.      If distance(Mi, Mj) < Dthres: 

12.          Give number i as label to both Mi and Mj  

13.      Else: 

14.          Give number i as label to Mi 

15.          Give number j as label to Mj 

16.      If multiple labels exist in one group: 
17.          Choose the smaller label for the group. 

18.  Merge the same label group. 

19.  Return G = {G1, G2, G3, …} 

 

  
(a) (b) 

Fig. 3 The region separation from not convex shapes to convex shapes. 

(a) Object connection with order sorting. (b) Object connections in convex 
shapes. 
 

 

Fig. 4. The example for using affordance to speculate the objects may 

appear. The probability P implies the existence likelihood of certain 

objects given the observed item as well as its affordance. 
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may allow the robot to possess better surmise on scene 
inference and event inference. 

After constructing the object and affordance knowledge, 
we propose a probability model for inferring the scene while 
the object and affordance knowledge are considered 
simultaneously, written as Equation (4): 
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The denominator Z represents a normalized factor; J denotes 
the number of the observed objects; K denotes the number of 
possessed affordance of the object; A denotes the affordance 
knowledge set provided by human; Si denotes the i-th scene; 
O denotes the set of observed objects; Ojak denotes the possible 
object that can be expected when object Oj is observed; and PSi 
denotes the probability distribution for scene labeling. 

 The physical meaning of  jja |A,OOP
k

describes the 

probability at which an object may appear given that an object 
has already been recognized, named as affordance probability. 
Taking Fig. 4 as an example, when a bowl is recognized by the 
robot, there exists chances for a cup, a spoon, a bottle, and a 
fork to appear at the same time. This relation is generated by 
the affordance. That is to say, a bowl has affordances 
“pourable,” “can sustain drinks,” and “dining usage”. On the 
other hand, a fork has the single affordance “dining usage.” 

Consequently, the affordance probability  
bowlfork|A,OOP  is 1/3. 

Fig. 5 illustrates an example for descripting how the 

propose scene inference model and works. The process can be 

separated into two levels given observed objects O1 and O2. 

The first level inference tries to use the recognized objects to 

inference the scene, leading to PSi
1. As for the second level, 

the system first infers the probability of existence of unseen 

objects through comparing their similarities of affordances 

with those observed objects. With the help of our second level 

inference based on the effect of affordance, the robot can 

speculate more even when some objects are not recognized. 

D. Event Layer 

 The purpose of event layer is trying to combine all the 

information discussed previously as the affordance in order to 

improve the robustness of event detection ability. There are 

lots of works which focus on predicting the human activities 

or actions based on depth image or skeleton information. 

However, since a robot is a moving agent, it may lose 

observation often. Under the lack of observation, a robot 

cannot make a good judgment. For instance, for a skeleton 

detection based action recognition system, the system cannot 

perform well when the skeleton is unseen or noisy. The 

functionality of event layer then plays an important role as a 

gatherer by combining all the information discussed above to 

provide a robust resource for a robot to make decision. 

The inputs to the event layer are Human Pose State coming 

from skeleton detection, combining information from 

previous Object Layer and Scene Layer. With the 

combination of different types of resource assigning to event 

layer, the detection is expected to be robust. Besides, the 

human’s engagement level is also considered. Inspired by the 

human body languages when humans are interacting each 

other together [16], this work takes three kinds of human body 

languages into account to represent the engagement level of a 

human as shown in Fig. 6.  

While inspired by the work [17], the system tries to 

calculate the angles between limbs. However, as mentioned 

previously, since the robot is a moving agent, it may not 

observe enough information all the time, the “Unknown” state 

is kept consequently. Therefore, the robot will just take the 

observed information to make the inference instead of 

guessing on the unseen/undetected joints. Although the 

“Unknown” state means missing information, with the 

information from Object Layer and Scene Layer, the robot can 

still make good inference. 

Also, in order to obtain the engagement level, we derive the 

relation as Equation (5): 
 






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lengtharmC

lengthshoulder
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arccos  

 

(5) 

if θengaged <θthres and find human face: turning to the robot. 
 

We define θengaged as the engaged angle, with human torso 

fully facing the robot being zero. The constant C is the ratio 

between the length of a human’s shoulder and arm when 

human torso is fully facing the robot. By normalizing the 

shoulder length with arm length, we can calculate the tilt 

angle of human shoulder with regard to the fully facing one. 

θthres is the threshold angle for confirming the human is 

turning to the robot. Therefore, the robot can detect whether 

or not the human is likely to interact with it by calculating the 

engaged angle and check the faces from skeleton detection. 

Finally, the system calculates the possible human event 

 

 
Fig. 5 An illustration of how scene inference works. The robot performs 

two level scene inference on the basis of 𝑶 
 

   
(a) (b) (c) 

Fig. 6 The example of engage level. (a) Not engaged: The person is not 

neither facing to the robot nor turning to the robot. (b) Half engaged: 
The person is facing to the robot but not turning to the robot. (c) 

Engaged: The person is facing and turning to the robot at the moment. 
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probability based on the information from the Object Layer, 

scene layer, and human pose. The event probability 𝑃(𝑒𝑣𝑒𝑛𝑡) 

can separate into three independent probabilities which are 

𝑃(𝑒𝑣𝑒𝑛𝑡,𝑠𝑐𝑒𝑛𝑒), 𝑃(𝑒𝑣𝑒𝑛𝑡,𝑜𝑏𝑗𝑒𝑐𝑡), and 𝑃(𝑒𝑣𝑒𝑛𝑡,𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛) 

respectively as shown in Equation (6). 
 

𝑃(𝑒𝑣𝑒𝑛𝑡) = 𝑃(𝑒𝑣𝑒𝑛𝑡,𝑠𝑐𝑒𝑛𝑒) × 𝑃(𝑒𝑣𝑒𝑛𝑡,𝑜𝑏𝑗𝑒𝑐𝑡) 
× σ(𝑃(𝑒𝑣𝑒𝑛𝑡,𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛)) (6) 
 

σ: softmax function 
 

The probability 𝑃(𝑒𝑣𝑒𝑛𝑡,𝑠𝑐𝑒𝑛𝑒) = 𝑃(𝑒𝑣𝑒𝑛𝑡 | 𝑠𝑐𝑒𝑛𝑒) × 

P(scene) where P(𝑒𝑣𝑒𝑛𝑡 | 𝑠𝑐𝑒𝑛𝑒) comes from human prior 

knowledge that some events may only happen in certain 

scenes. There are six events: standing, eating, talking, 

working, sleeping, and watching TV. P(scene) is the scene 

probability obtained from the scene layer. The probability 

𝑃(𝑒𝑣𝑒𝑛𝑡,𝑜𝑏𝑗𝑒𝑐𝑡) is calculated by making statistical analysis 

on the observed objects and the related affordances. The 

probability and 𝑃(𝑒𝑣𝑒𝑛𝑡,𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛) is generated by making 

statistical analysis on the affordances from observed skeleton. 

Besides, we apply the softmax function to this term to gain 

larger weighting. 

E. Social Friendly Navigation 

The last piece of our system is to conduct social friendly 

navigation for service robot using the stored knowledge in the 

multi-layer environmental affordance map. The social 

friendly navigation focuses on whether to interrupt people or 

not. The robot will determine whether a location is able to be 

interrupted by checking human’s engagement level, the 

scenes and the events occurring that stored in the multi-layer 

environmental affordance map. While the human’s 

engagement level is “not engaged” or the scene is “office”, or 

the events are “sleeping” and “working”, the separated region 

will be formed as virtual obstacles so that A* algorithm will 

generate alternative path which will not intrude the regions as 

Fig. 7 shows. 

 

IV. EXPERIMENTS AND RESULTS 

In this section, we implement the proposed multi-layer 

environmental affordance map on real robot in the testing 

scenario to validate the performance. The robot we use is the 

social interaction robot Pepper equipped with RGBD camera 

and laser range finder. The sensing data from Pepper are sent 

to laptop server with Intel® Core™ i7-8550U (1.80 GHz x 8) 

CPU and a single GPU (Nvidia GeForce GTX 980) through 

wireless connection. 

The whole system is built under Robot Operating System 
(ROS). The implementation detail is shown in Fig. 8. The 
inputs are the RGB images from the front and bottom camera, 
the depth image from the depth camera, and the laser range 
finder. The boxes in orange color are the functions for 
perceptions, while the red ones are the multi-layer 
environmental affordance map that organizes the information. 
The output of our system is the human activity understanding 
and human engagement level which can be applied for social 
friendly navigation. SLAM fusion and the robust localization 
in the static map layer have been addressed in our previous 
work [13]. 

A. Human Pose, Engagement, and Event in Event Layer 

With the help in [18], we are able to robustly obtain human 

skeleton. Through our human pose detection algorithm, we 

can infer human event by information revealed from posture. 

TABLE I shows the event inference results in a dining room. 

The objects detected by Pepper robot are: chair, dining table, 

potted plant, fork, cup, and spoon. The scene inferred by 

Pepper is dining room with confidence of 0.9997. The final 

event detections, based on all the information from our system, 

are eating and standing with probabilities of 0.94 and 0.63 

respectively. 

B. Social Friendly Navigation with Proposed Architecture 

 A practical application for the proposed multi-layer 

TABLE I. EVENT INFERENCE RESULTS 

 Skeleton Detection Object Layer 

 

  

stand eat talk work sleep 
watch 

TV 
Result 
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(a) (b) 

Fig. 7 Illustration of social friendly navigation. The mobile robot is 

trying to move from the current location (blue point) to the target 

position (green point). (a) is the shortest global path in the static map. (b) 
is the global path considering region intrusion from scene layer where 

the robot observes human inside is unwilling to be interrupted. 
 

 

Fig. 8 The implementation details. The system takes robot sensor data as 
input, generates perceptions through functions in brown boxes, organizes 
information with layers and outputs social friendly navigation. 
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environmental affordance map is to generate social friendly 

navigation that is suitable in the household environment. The 

follows are the demonstration scenarios for our system. 

First is the case that Pepper tries to approach to the master 

in the office without interrupting the person watching 

television in the living room, as shown in Fig. 9(a). After 

Pepper finds out the shortest path, it soon recognizes that it is 

about to cross the living room based on the information 

provided by the scene layer. Furthermore, Pepper also detects 

that there is a human watching TV with low engagement level 

according to the event layer. As a result, it marks the living 

room region as blocked and regenerate a social friendly 

navigation strategy. The second demonstration showing in 

Fig. 9(b) is that the master calling Pepper in the dining room.  

While Pepper stops and finds out the master is facing 

toward it, meaning high engagement level. Thus, it will mark 

the dining room as traversable and move toward human. We 

then provide a short video clip to demonstrate that Pepper can 

perform social friendly navigation robustly in real time based 

on the proposed system. 

V. CONCLUSION 

In this paper, a multi-layer environmental affordance map 

architecture which includes “static map layer”, “object layer”, 

“scene layer”, and “event layer” is proposed. The architecture 

is designed to achieve robust indoor localization, scene 

localization, human event detection and socially friendly 

navigation in an efficient way under limited computational 

resource. The main characteristic of the proposed architecture 

is that the observation and inference results can be organized 

and stored efficiently such that the robot is capable of 

generating high-level navigation strategies. The experimental 

results show that the robot can not only move robustly but also 

reinforce its perception and inference abilities based on the 

multi-layer environmental affordance map. In the future, we 

expect to handle more practical HRI tasks robustly and 

accurately using the proposed architecture. 
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(a) (b) 

Fig. 9 The demonstration for our social friendly navigation based on the 
multi-layer environmental affordance map architecture. Figures in the left 

column are the first case that Pepper navigates to the office without 

interrupting the person watching television. Figures in the right column 
are the second case that Pepper stops its original navigation and moves 

toward human for further interactions. 
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