
  

Abstract—Recently, as the rise of deep reinforcement 

learning, it not only can help the robot to convert the 

complicated environment scene to motor control command 

directly but also can accomplish the navigation task properly. In 

this paper, we propose a novel structure, where the objective is 

to achieve navigation in large-scale indoor complex 

environment without pre-constructed map. Generally, it 

requires good understanding of such indoor environment to 

make complex spatial perception possible, especially when the 

indoor space consists of many walls and doors which might 

block the view of robot leading to complex navigation path. By 

the proposed distributed deep reinforcement learning in 

different local regions, our method can achieve indoor visual 

navigation in the aforementioned large-scale environment 

without extra map information and human instruction. In the 

experiments, we validate our proposed method by conducting 

highly promising navigation tasks both in simulation and real 

environments.  
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I. INTRODUCTION 

     For decades, many researchers in robotics field keep trying 
to introduce robots into domestic environment, and the most 
essential problem is the navigation. How to efficiently find a 

path to the goal, accurately localize current position and 
safely navigate without collision are always challenging and 
desirable for the mobile robots. Moreover, while navigating in 
domestic environment, the traversable space is usually narrow 
and crowded, and there are some situations which make the 
navigation tasks even harder, such as the blind alley hidden in 
the large-scale environment. One basic solution is to use 
visual data to acquire useful information. In comparison with 
Laser Range Finder and Light Detection And Ranging 
(LiDAR), visual data lead to better description of objects and 
thus identify the environment more comprehensively. 
Traditional methods, though showing good results, require 
heavy feature engineering and costly pre-constructed maps in 
order to localize the robot. 

Recently, the rise of deep reinforcement learning (DRL) 
brings a significant advancement to the robotics field. To deal 
with navigation tasks, it also inspires researchers with a new 
challenge: indoor navigation without any feature engineering 
and pre-constructed map. That is, robot learns how to navigate 
only from the environment and predefined reward function. 
However, in the traditional DRL algorithm, the more complex 
and large the indoor environment is, the more difficult and 

slow the DRL converges. Also, if the task is challenging, the 
algorithm may consume plenty of time for training. 

In this paper, we study the problem of DRL based indoor 
visual navigation and propose a novel learning architecture to 
enable the robot to find a path leading to the goal in the indoor 
large-scale complex environment. Due to the high positive 
correlation between the complexity of navigation task and 
training time of DRL algorithm, we divide the navigation task 
to several simpler tasks in different regions, as shown in Fig. 1. 
The proposed method would train the agents separately in 
different regions in the indoor environment. Then, the trained 
models are used to guide the agent to achieve the entire 
navigation task that is complex and crosses multiple local 
regions, which are rooms and corridors in the indoor scene. 
The problem of distributed training is how to know which 
region model is proper in the environment without knowing 
the exact current location. Our algorithm can recognize the 
scene image and decide which region model should be used to 
achieve the navigation task. The chosen trained local region 
model would generate the action to lead agent to the goal 
position. Our method can utilize the distributed training result 
and achieve better result comparing to traditional DRL 
method, which would be discussed in the section V.  

II. RELATED WORKS 

 In this section, we first present the current work related to 

visual navigation, and then discuss the effect of introducing 

deep learning. Although the works so far have made a great 

progress on visual navigation, yet the large scale map-less 

indoor visual navigation still remains a challenge. 

A. Indoor Visual Navigation 

Indoor visual navigation is a classical problem that has 
been studied for long time. The major approaches of visual 
navigation can be separated into two categories [1], map based 
method and map-less method. Map based method needs to 
build the map for the entire environment first and then use it to 
schedule the rest of task of navigation. Sim et al. [2] presented 
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Fig. 1. Our proposed distributed DRL based indoor visual navigation 
algorithm will train different model in different region in the environment; 
after training, agent can achieve navigation task from region A to C. 
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an architecture to learn how to automatically select the scene 
features from landmarks and track them each frame by frame. 
The tracked features are represented as position and 
subsequently used in localization task. [3] and [4] proposed an 
efficient and fast solution for simultaneous localization and 
mapping (SLAM) using stereo camera and Rao-Blackwellised 
particle filter. The 3D landmark is extracted and modeled as 
dynamic Bayes network for indoor localization and grid map 
contribution.  

The other category is map-less based visual navigation that 
only extract the image feature from the visual sensor and 
convert it to motor command directly. These methods are 
efficient to solve the reactive vision based navigation problem 
[1]. Reactive vision based navigation focuses on how to 
navigate in the environment and avoid the collision reactively. 
Talukder and Matties [5] combined optical flow and stereo 
camera to estimate the depth of scene and they can detect 
moving objects while robot is also moving. Wang et al. [6] 
suggested a novel method of constructing paired-landmarks 
that consist of two characters, which is not only low-cost, 
high-efficient but also easy to generate more combinations for 
large scale navigation. Chen et al. [7] proposed a solution of 
using visual gyroscope for navigation and mapping and 
unscented Kalman filter is applied for sensor fusion to get 
accurate robot pose. Although the map-less based visual 
navigation can use the image feature and directly transfer it to 
steering control command, the drawback is that global 
information is not perceived and the path is often not optimal 
in global view. On the contrary, map-based visual navigation 
can utilize the map to localize robot’s current pose and 
schedule the path to the goal, yet the map often needs to be 
constructed beforehand, and the algorithm is often limited to 
static environment. 

B. Visual Navigation with Deep Learning 

The combination of deep learning and visual navigation 
has shown promising result recently. Tai et al. [8] presented a 
deep network architecture for obstacle avoidance. The raw 
image is fed into the model to choose proper steering angle. 
Gupta et al. [9] proposed a deep mapper and hierarchical 
planner for visual navigation. The mapper network can 
transform the egocentric view image to top-down free space 
prediction, and the planner network would use this 
information to generate next action to the goal. Though deep 
architecture and achieve good performance, most of them are 
trained offline and need to collect sample dataset first. The 
reinforcement learning that learns from reward function 
instead of labeled data seems to be a feasible solution. The 
deep reinforcement learning (DRL) that combines deep 
network and reinforcement learning are also studied in the 
visual navigation problem. Oh et al. [10] presented a novel 
memory-based DRL which can conquer the maze 
environment through many iterations training. The method 
can deal with the complicated scene image and generate 
proper actions. However, the target needs to be fixed, which is 
not able for practical navigation where the target may vary in 
different contexts. Zhu et al. [11] suggested the target-driven 
style for DRL model, where the target image is also input for 
DRL training. Zhang et al. [12] proposed a DRL model whose 
successor feature is used for recording the characteristic in the 
previous observation. So far, the deep reinforcement learning 
has solved many problems in visual navigation field without 

hand-extracted feature and build-in maps. Nevertheless, visual 
navigation in large-scale and complex environment is still a 
difficult task and lack of extensive studies. 

III. SYSTEM OVERVIEW 

Fig. 2 shows our proposed system overview. Our method 
is to achieve navigation task in the large-scale complex indoor 
environment. To relief the growing of task difficulty caused 
by region area and complexity of path, we divide the whole 
environment into different local regions and train the agents to 
achieve navigation tasks in the local regions. After the training 
results are converged, the scene images are embedded and 
recorded to the database. This database is used for local model 
selection. When the agent starts the navigation task, every 
scene image can be compared to the database and classified to 
the specific local region. The selected local region model then 
takes the responsibility for navigation policy and generates 
navigation action according to the scene image and target 
position. 

IV. METHODOLOGY 

In this section, we will describe our proposed architecture. 
We first introduce our proposed local region model, which is 
trained with auxiliary task that can speed up the convergent of 
image embedding vector and stabilize the performance of 
DRL model. In the second part we will go through the details 
of the proposed auxiliary task, which is to estimate the last 
state scene image. In the third part, the whole picture of 
distributed DRL based visual navigation is shown and 
discussed. 

A. Local Region Model 

The model is trained in the local region of the environment, 

such as rooms or corridors. During every iteration, the 

convolutional neural network (CNN) takes a state image from 

the camera and generates the embedding vector, which will be 

passed to two different networks. One is the de-convolutional 

network for recovering the vector back to the last-state image. 

As shown in Fig. 3, the state image s𝑛  is encoded through 

convolutional network with last action information 𝑎𝑛−1 and 

decoded to last state image s𝑛−1. This kind of auto-encoder 

 

Fig. 2. System overview. 

 
Fig. 3. Proposed local region model. 
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technique is widely used in many image embedding problem, 

which can autonomously learn the embedding meaning of 

image by self-training fashion without supervision. The other 

network is the reinforcement learning model, which includes 

fully connected layers presented as “DNN” and recurrent 

neural layers presented as “RNN in Fig. 3. We use one fully 

connected layer in the DNN and one long short-term memory 

(LSTM) [13] layer in the RNN, which provides the ability to 

memorize past input and take it for consideration to generate 

next action. The reinforcement learning network would take 

the learned embedding vector and the target position in the 

global coordinate into account, and then generates the next 

action as well as the value of that action, which is similar to 

actor-critic model [14]. The training skill that combines 

auto-encoder and reinforcement learning is proposed by [15]. 

Fig. 4 shows the training process of local region model, where 

time line counts the time step in iterations of reinforcement 

learning, and the local region model tries to reach the target 

point with DRL while reconstructing the last state image from 

the last action and current state. 

B. Auxiliary Task 

After introducing our local region model, we discuss the 
proposed convolutional auto-encoder structure. The network 
architecture is shown in Fig. 5. The CNN takes current state 
image, whose width and height are both 256 pixels, as the 
input and encodes to a 256-dimension vector. Other than the 
regular auto-encoder [16], with the output of decoder being 
the same picture as the input, we do slight modifications. First, 
we change the goal of decoder from recovering the same 
image to recovering the last state image. Second, we add the 
last action, which is a 3 dimensional vector (x𝑟 , y𝑟 , θ𝑟)  in 
robot’s coordinate, as input to the decoder. This strategy can 
offer the embedding vector causality of action and image pairs, 
and make deep reinforcement learning training faster and 
better. Through the proposed auxiliary task structure, the 
current state image is encoded to the embedding vector in 
every iteration. The embedding vector, representing the spatial 
perception, is then used to generate the appropriate action 
according to the goal. 

C. Distributed DRL based Visual Navigation 

The distributed DRL based visual navigation utilizes the 

training results of local region models to have spatial 

perception in the large-scale environment. Our distributed 

training contains two steps. First, the indoor environment is 

separated into several local regions. For example, in Fig. 1, an 

indoor environment is separated into 3 areas, which are 

offices and corridor. Then, an agent is assigned and trained in 

each region. In order to generate the same embedding vector 

while encoding the same image by different local model, we 

train our all local models at the same time and every local 

model shares the same encoder network parameters. This 

strategy guarantees the latent vector would share the same 

embedding space, which is important for the distributed 

training to select the local model later on. On the other hand, 

the target position is represented in global coordinate, not 

only in the navigation task but also in the distributed local 

region model training. Thus, all the local region models can 

share the same coordinate system, this can keep consistence 

between sharing embedding space and sharing coordinate. 

 After the training of local region models are converged, 

the second step is to apply the distributed map-less visual 

navigation model, which is shown in Fig. 6. The CNN 

encoder takes  the current state image s𝑛  as input and 

generates the embedding vector. The model selector, which is 

a classifier trained by the collected state image embedding 

database, would assign the current vector to a specific local 

model, generating the action to guide the robot to the target 

position. In our distributed map-less visual navigation, the 

model selector finds the most proper local model for each 

state, while the local model simply focuses on optimizing the 

navigation performance in the local region. Our method 

proposed to use plenty of local models to achieve complex 

large-scale environment navigation, which is extendable and 

scalable for any size of environment. The training on local 

model can be efficient and fast since it has less parameters 

than a huge global model. The selection strategy makes the 

training experience can share the distributed structure, realize 

the large-scale complex indoor environment navigation. 

V. EXPERIMENTS 

In this section, we will first mention the details of our 

learning setup, then introduce the experimental results both in 

 
Figure 4. Training process of local region model. 

 

Figure 5. Proposed auxiliary task auto-encoder model. 

 

Figure 6. Distributed DRL based visual navigation 
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simulator and real indoor environment with real robot. 

A. Learning Setup 

The key ingredients of the reinforcement learning setup: 

action space, observation and goals, reward function design. 

1) Action space: The action space in our work is defined 

as discrete actions, such as move forward, turn left, and 

turn right. We assume that the traversable poses are finite 

and discrete in the environment. To make training faster, 

the angel of rotation is fixed to 90 degrees. 

2) Observation and goals: The observation of the agent 

is RGB image taken by agent’s camera from its 

egocentric view. The goal is a 3-dimentional vector 

(𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟)  representing in global coordinate system, 

which is assumed on the traversable point in the 

environment. 

3) Reward function: The decision of reward function 

affects both the training speed and the final performance. 

In this work, in order to achieve the efficient navigation in 

the large-scale indoor environment, we set the reward 

function as Eq. (1): 

 

𝑟𝑒𝑤𝑎𝑟𝑑 = {  
10

−0.01
  

    𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 (1) 

If the agent reaches the target, it will get 10 points; if is 

not, it will get slight punishment since we would like to 

increase the time efficiency for navigation task. 

B. Simulation Experiments 

The simulation environment is provided from the open 

source dataset called Stanford large-scale 3D Indoor Spaces 

(S3DIS) [17]. The dataset consists of 3D scans, which is in 

the form of textured mashes, and collected six large-scale 

indoor environments from 3 different buildings of 

educational and office use. This large-scale complex indoor 

data set is suitable and challenging for us to train our method 

and evaluate it. Although the indoor space is large, the 

traversable is narrow and limited. For example, Fig. 7(a) 

shows the indoor environment whose area is 450 m2, but the 

traversable space which is shown in Fig. 7(b) is relatively 

narrow. In Fig. 7(b), the blue region is the place where the 

robot agent can navigate, and the red region is unnavigable. 

There are many fixed objects in the virtual environment that 

can be obstacles when agent is executing navigating task. Fig. 

8 shows some examples about the objects. In our goal, we 

want to teach agent to know to recognize and avoid the 

obstacles by image. 

In the simulation environment, the parameters we set are 

shown in Table I. The height of camera is 120 cm. Every 

image captured by the camera is 3 channels, 256 x 256 pixel 

image captured in 60° field-of-view (FOV), which provides 

us rich information of the environment. The virtual agent in 

the simulator has volume and collidable, meaning that it can 

be stopped by the object or the wall in the environment. When 

the agent is facing a wall but it still wants to move forward, 

the simulator will warn it and the action is ineffective. We 

evaluate our algorithm with two different tasks, which is in 

the different region and different challenges the agent may 

encounter, as in Fig. 9. TASK 1 starts from a room, goes 

through a corridor, and moves to another room, where the 

robot needs to pass the door and avoid from collision when 

passing corridor. Both two rooms are crowded and full of 

objects and obstacles, which increases difficulty of task to get 

out the starting room and reach the goal in another room. By 

our observation, the regions in TASK 1 can be divided into 

three parts, which are starting room, corridor, and goal room. 

We then apply our algorithm on these three regions, as shown 

in Fig. 10(a). TASK 2 is to move from a hall to another hall. 

the challenges here are the wide region and long task path, 

which makes agent need more exploration to reach the goal. 

We set three local regions in TASK 2, which are starting hall, 

corridor and goal hall, as shown in Fig. 10(b). 

TABLE I. Simulator parameters for virtual agent 

Parameters Value 

Camera height 

Camera resolution  

Field of view 
Image channel 

120 (cm) 

256 × 256 (pixels × pixels) 

60° (degree) 

3 (R,G,B) 

Agent radius  20 (cm) 

Agent height 140 (cm) 

Step length 

Rotating angle 

40 (cm) 

90° (degree) 
 

 
(a) 

 
(b) 

Figure 7. (a) Large-scale complex indoor environment simulator.(b) 

Traversable space in Fig. 7(a)  

   
Figure 8. Object examples in the environment, left is a table and chairs, 

middle is a trach can, right are office chairs. 

  
TASK 1 TASK 2 

Figure 9. Different evaluation task in simulator 

  
(a) (b) 

Figure 10. Definition of local region in different task 
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First, we evaluate our proposed model with and without 

last state image estimation, which is auxiliary task to 

accelerate the convergence speed. Fig. 11,12 shows the 

training performance in TASK 1 and TASK 2 trained by 

proposed model with auxiliary task and without auxiliary task 

with respect to training episodes the agent takes, which we set 

to 1200. The orange curves represent our proposed method 

with auxiliary task, and the green curves represent the method 

without auxiliary task. Figures from the left column show the 

length of action sequence agent takes to accomplish the task, 

while figures from the right column are the total reward of 

each training episode. Each row of figure is a training result 

of three different local regions in TASK 1 and 2 respectively. 
 

The comparison result shows that our proposed auxiliary 

task (orange) perform better than the method without 

auxiliary task (green). This phenomenon not only appears in 

the beginning of the training, but in the stage for training 

convergence. Some training curves in certain local regions 

show that the difference between two curves in the 

convergence stage are small, even the method without 

auxiliary task reaches higher value than our proposed method. 

The reason is that the training curve of the proposed method 

is about to converge, so the slope of the curves become lower 

and the learning speed goes slower, and the method without 

auxiliary task gradually catches up with the proposed method. 

To sum up, Fig. 11,12 shows that our proposed auxiliary task 

can help training convergence faster. 
 

 

After training the local region models, we can evaluate 

our distributed DRL based navigation. The method we took 

for comparison is the state-of-the-art in the field of DRL, 

which is asynchronous advantage actor-critic algorithm (A3C) 

[14]. The asynchronous training skill makes A3C converge 

faster and beats other strong competitors. TABLE II. shows 

the result of comparison. We keep all the conditions of A3C 

the same as our proposed method except the local region 

training before task. The indexes we use are the success rate, 

average hitting times and average length. The success rate is 

calculated by the mean of 100 testing trails, the success here 

means the agent starts form the beginning point and reaches 

the goal point within the time limit, which is 1000 actions; the 

average hitting times means the average times of agent hitting 

the wall or obstacle in the success trail; the average length 

represents the average length of action the agent takes in the 

success trail. The TABLE II shows that within the same time, 

which is 12 hours in our experiment setup, our proposed 

method can achieve higher success rate than the compared 

method. There is an interesting phenomenon that our success 

rate is higher, yet the average hitting times and the average 

length is worse than the compared method. The high success 

rate and unsatisfying performance give us a future direction 

that our training in the local regions still can be improved, and 

the distributed training strategy proved to be effective. The 

improvement of distributed training is 168 % in the success 

rate of TASK 1 and 200% in the success rate of TASK 2. The 

future direction would be to find a better training algorithm in 

the local region.  

C. Real Environment Experiments 

To validate our proposed method in the real indoor 

environment, we implement our method on the real robot 

platform. The mobile robot we use is pioneer P3-DX [18], 

which is a differential wheel mobile platform with two active 

wheels and one passive steering wheel. To make it close to 

the height of human, we stack a shelf and place the web 

camera on it. The camera we use is Logitech web camera 

providing images with 256 by 256 and 60 Hz. The 

computation power of the robot is the laptop, ASUS GL552 

with NVIDIA Geforce GTX 960M graphic card and i7 

6700HQ CPU, as shown in Fig. 13(a). Besides, Fig. 13(b) 

  
(a) starting room 

  
(b) corridor 

  
(c) goal room 

Figure 11. TASK 1 training performance comparison. 

  
(a) starting hall 

  
(b) corridor 

  
(c) goal hall 

Figure 12. TASK 2 training performance comparison. 

TABLE II. Comparison with different task and final performance 

TASK 1 
Success rate 

(100/100) 

Average  

Hitting times 

Average  

Length 

A3C [24] 19/100 225.32 539.07 

Ours (proposed) 51/100 436.22 689.06 
 

 

TASK 2 
Success rate 

(100/100) 

Average  

Hitting times 

Average  

Length 

A3C [24] 16/100 142.43 837.84 

Ours (proposed) 48/100 247.69 874.27 
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shows the traversable area of the environment. The 

experiment task is to start form the red point to the blue point. 

As our observation, we train two different models in two local 

regions A and B in the experiment, as Fig. 13(b) shown. The 

step of robot is set to 1m in the experiment and the rotating 

angle is 90 degrees. Fig. 14 shows the training performance of 

local region model, the orange curve is the result of region A 

and the green curve is the result of region B. Left figure  

shows the sequence of action the robot takes in the local 

region, and the right figure shows the reward in each episode. 

The curve converges before 1000 episodes, which means that 

our method can work in the real environment. We examine 

the final performance of our method in the real indoor 

environment. TABLE III is the final result of our experiment. 

The success rate reaches 76% in this experiment, the average  

action length is 567.53 and the average hitting times is 

299.03. The result shows that our proposed method can be 

applied on the real robot platform and successfully lead the 

robot to the target goal.   

VI. CONCLUSION 

In this paper, we proposed a novel deep reinforcement 

learning (DRL) architecture to solve the map-less indoor 

navigation in the large-scale environment. We used the 

auxiliary task to estimate the last state image with the 

information of the current state image and the last action, 

which can help DRL converge faster than the conventional 

one. We also used the target position as an input to DRL, 

which teaches learning model to transfer the global target 

coordinate to the policy that leads the agent to the target. The 

main proposed idea is to use distributed training which 

recognizes and classifies the current state and asks the 

corresponding local region model to generate the most 

optimal action.  

The experiment results in simulation showed that the 

proposed approach is able to make the robot navigate in the 

complex, large-scale indoor environment and the 

performance in training is better than the state-of-the-art 

method. On the other hand, it also reaches 76% success rate in 

the real environment and proves that our approach is plausible 

and promising. Due to our assumption, the local region is set 

by the researchers, which contains a sort of human knowledge 

inside. In the future, this work can be improved so that one 

can more intelligently choose the local region model for 

training. Besides, the current algorithm cannot detect the 

moving obstacle, and also the human in the environment, 

which is another possible direction for future works. 
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Figure 13. (a) Robot platform. (b) The local region A and B.  
 

  
Figure 14. Training performance of real environment experiment. 

TABLE III. Final performance of real environment experiment. 
REAL 

ENVIRONMENT 

Success rate 

(100/100) 

Average  

Hitting times 

Average  

Length 

Ours  76/100 299.03 567.53 
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