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Abstract

Multi-Agent Path Finding (MAPF) is the problem of find-
ing collision-free paths, one for each agent, in a shared envi-
ronment, while minimizing their sum of travel times. Since
solving MAPF optimally is NP-hard, researchers have ex-
plored algorithms that solve MAPF suboptimally but effi-
ciently. Priority-Based Search (PBS) is the leading algorithm
for this purpose. It finds paths for individual agents, one at
a time, and resolves collisions by assigning priorities to the
colliding agents and replanning their paths during its search.
However, PBS becomes ineffective for MAPF instances with
high densities of agents and obstacles. Therefore, we intro-
duce Greedy PBS (GPBS), which uses greedy strategies to
speed up PBS by minimizing the number of collisions be-
tween agents. We then propose techniques that speed up
GPBS further, namely partial expansions, target reasoning,
induced constraints, and soft restarts. We show that GPBS
with all these improvements has a higher success rate than
the state-of-the-art suboptimal algorithm for a 1-minute run-
time limit, especially for MAPF instances with small maps
and dense obstacles.

Introduction
Multi-Agent Path Finding (MAPF) (Stern et al. 2019) is
the problem of finding collision-free paths, one for each
agent, in a shared environment while minimizing the sum
of travel times of each agent at its goal. It has many applica-
tions, such as autonomous warehouses (Wurman, D’Andrea,
and Mountz 2008), unmanned aerial vehicles (Ho et al.
2019), and autonomous vehicles (Li et al. 2023). Unfortu-
nately, solving MAPF optimally is NP-hard (Yu and LaValle
2013), and optimal algorithms (Boyarski et al. 2015; Li et al.
2019, 2020) thus require exponential time. Consequently, re-
searchers have explored algorithms that trade off optimality
and runtime.

Prioritized algorithms are simple-yet-efficient for solv-
ing MAPF suboptimally. These algorithms decouple MAPF
into several single-agent path-finding problems that mini-
mize the travel time of the agent. Overall, priorities are as-
signed to agents such that those with lower priorities have
to avoid collisions with those with higher priorities. Priori-
tized Planning (PP) (Silver 2005) and Priority-Based Search
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(PBS) (Ma et al. 2019) are the leading prioritized algorithms.
PP assigns a unique priority to each agent, while PBS lazily
assigns priorities to colliding agents. Although PP and PBS
are efficient, they are neither optimal nor complete. That is,
they may fail to find solutions for some solvable MAPF in-
stances.

Several improvements have been proposed for PP, such
as assigning priorities to agents according to the distances
from their start to their goal locations (Berg and Over-
mars 2005) and restarting PP with randomly-assigned pri-
orities upon failure (Bennewitz, Burgard, and Thrun 2001).
However, few techniques have been developed to improve
the effectiveness of PBS (Boyarski et al. 2022). We close
this gap by proposing several improvements for PBS by
adopting a range of techniques and concepts from optimal
and bounded-suboptimal search algorithms. Specifically, we
present Greedy PBS (GPBS), which is a version of PBS that
prioritizes nodes in the search tree according to the number
of collisions between their paths. This has been done be-
fore in the Conflict-Based Search (CBS) framework (Barer
et al. 2014; Walker, Sturtevant, and Felner 2020) but never
for PBS. We also add to GPBS the partial expansions from
EPEA* (Goldenberg et al. 2014) and the target reasoning
from CBS (Li et al. 2020). We also introduce a novel tech-
nique for prioritizing nodes in the search tree, called induced
constraints, which is based on counting the number of pri-
orities they represent (as opposed to counting the number of
collisions between their paths). To handle situations where
GPBS could not find a path for an agent for a set of priori-
ties, we introduce the soft restart technique, which removes
all priorities before restarting the search but keeps the paths
of the agents instead of restarting the search from scratch.

Empirically, we compare GPBS with other prioritized
algorithms, namely PP and PBS. We also compare it
with all our improvements to the state-of-the-art bounded-
suboptimal algorithm, namely Explicit Estimation Conflict-
Based Search (EECBS) (Li, Ruml, and Koenig 2021), and
suboptimal algorithms, namely PBS with the merging tech-
nique (PBS w/m) (Boyarski et al. 2022) and Large Neigh-
borhood Search (MAPF-LNS2) (Li et al. 2022). Results
over 6 maps with up to 2,000 agents show that GPBS with
all our improvements has a higher success rate in all cases
than these state-of-the-art algorithms for a 1-minute runtime
limit. For all MAPF instances, GPBS outperforms PBS w/m,
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EECBS, and MAPF-LNS2 with a success rate that is 41%,
30%, and 10% higher, respectively. For MAPF instances
with small maps and dense obstacles (namely, the Random,
Maze, and Room maps described in the Empirical Evalu-
ation section), the improvements become 67%, 30%, and
19%, respectively. A study confirms that the combination of
all proposed techniques yields the best results.

Preliminaries
In this section, we define MAPF formally and describe pri-
oritized algorithms that solve it suboptimally.

Multi-Agent Path Finding
We use the MAPF definition by Stern et al. (2019). A MAPF
instance is composed of an undirected and connected graph
𝐺 = (𝑉, 𝐸), also known as a map, and a set of 𝑘 agents
𝐴 = {𝑎1, . . . , 𝑎𝑘}. Each agent 𝑎𝑖 ∈ 𝐴 has a unique start
vertex 𝑠𝑖 ∈ 𝑉 and a unique goal vertex 𝑔𝑖 ∈ 𝑉 . Time is dis-
cretized into timesteps. At each timestep, an agent is allowed
to either move to an adjacent vertex or wait at its current ver-
tex. A path 𝑝𝑖 of an agent 𝑎𝑖 ∈ 𝐴, starting at its start vertex
𝑠𝑖 and ending at its goal vertex 𝑔𝑖 , is a sequence of vertices,
indicating where agent 𝑎𝑖 is at each timestep. We assume
that an agent eventually waits at its goal vertex permanently.
The path cost of path 𝑝𝑖 , denoted as 𝑐𝑖 , is the number of
timesteps needed by agent 𝑎𝑖 to move from its start vertex to
its goal vertex, ignoring the timesteps when it permanently
waits at its goal vertex. A vertex collision or, equivalently,
vertex conflict occurs between the pairs of the agents 𝑎𝑖 and
𝑎 𝑗 iff the two agents stay at the same vertex at the same
timestep. An edge collision or, equivalently, edge conflict
occurs iff the two agents traverse the same edge (𝑢, 𝑣) ∈ 𝐸

in opposite directions at the same timestep. We call a pair of
agent indices (𝑖, 𝑗) a conflicting pair if there exists at least
one conflict between paths 𝑝𝑖 and 𝑝 𝑗 . A solution of a MAPF
instance is a set of paths {𝑝1, . . . , 𝑝𝑘} in which there is no
conflict between any pair of paths (i.e., no conflicting pair).
We evaluate the solution quality via the sum of (path) costs
(SOC), defined as

∑𝑘
𝑖=1 𝑐𝑖 . We say that a solution is optimal

iff the SOC is minimum, and suboptimal otherwise. In this
paper, we target suboptimal algorithms that have high suc-
cess rates for a 1-minute runtime limit.

Prioritized Algorithms
One way of solving MAPF is to decouple it such that the
algorithm finds one minimum-cost path for each agent indi-
vidually and then resolves any conflicts between the paths.
Another way of solving MAPF is to prevent conflicts be-
tween paths by using priority constraints, or constraints for
short. A constraint 𝑖 ≺ 𝑗 expresses that agent 𝑎𝑖 has a higher
priority than agent 𝑎 𝑗 . In this case, we find path 𝑝𝑖 before
path 𝑝 𝑗 , and path 𝑝 𝑗 must avoid any conflict with path 𝑝𝑖 . A
priority ordering ≺ is a strict partial order on the set of agent
indices {1, 2, . . . , 𝑘}. A total priority ordering is a special
case where the partial order is total, which is equivalent to
assigning a unique priority to each agent. A path 𝑝 𝑗 satisfies
a priority ordering iff it has no conflicts with all paths 𝑝𝑖
that satisfy 𝑖 ≺ 𝑗 in the priority ordering.

Low-Level Single-Agent Path Finding To find a path that
satisfies a priority ordering for an agent 𝑎𝑖 from its start ver-
tex 𝑠𝑖 to its goal vertex 𝑔𝑖 , Li et al. (2022) proposed the Safe
Interval Path Planning with Soft Constraints (SIPPS) algo-
rithm. Each SIPPS node 𝑛 contains (1) a vertex 𝑣(𝑛), (2) a
safe interval [𝑡𝑙𝑜𝑤 , 𝑡ℎ𝑖𝑔ℎ) indicating that the agent satisfies
the priority ordering if it occupies vertex 𝑣 from timestep
𝑡𝑙𝑜𝑤 to 𝑡ℎ𝑖𝑔ℎ−1 , and (3) a number of conflicts 𝑐(𝑛) between
the partial path from the start vertex 𝑠𝑖 to 𝑣(𝑛) and the paths
of the agents that do not have higher priorities than agent 𝑎𝑖 .
The 𝑓 -value of SIPPS node 𝑛 is the sum of its 𝑔-value and
ℎ-value, where the 𝑔-value is set to timestep 𝑡𝑙𝑜𝑤 and the ℎ-
value is a lower bound on the minimum number of timesteps
that it takes the agent to move from 𝑣(𝑛) to goal vertex 𝑔𝑖 . To
find a minimum-cost path, SIPPS always expands the SIPPS
node with the minimum 𝑓 -value in each iteration. Instead,
SIPPS can also always expand the SIPPS node 𝑛 with the
minimum number of conflicts 𝑐(𝑛) in each iteration, which
results in a suboptimal but minimum-conflicting path. For
PP, 𝑐(𝑛) is always 0 since each path must avoid conflicts
from the already-planned paths (of agents with higher prior-
ities).

Prioritized Planning Based on the classical prioritized
planning scheme (Erdmann and Lozano-Pérez 1986), Prior-
itized Planning (PP) for MAPF (Silver 2005) first chooses a
total priority ordering and then iteratively finds a minimum-
cost path for each agent according to that priority ordering.
The minimum-cost path of agent 𝑎𝑖is not allowed to conflict
with the already-planned paths of all agents 𝑎 𝑗 that have
higher priorities than agent 𝑎𝑖 (i.e, all agents 𝑎 𝑗 with con-
straint 𝑗 ≺ 𝑖). If, for the given total priority ordering, PP is
unable to find a path for an agent, then it randomly selects
a new total priority ordering and restarts from scratch (Ben-
newitz, Burgard, and Thrun 2001). Although PP is incom-
plete and finds suboptimal solutions, it finds solutions fast
and with close-to-optimal SOCs in practice.

Priority-Based Search Priority-Based Search (PBS) (Ma
et al. 2019) is a two-level algorithm inspired by CBS. On
the high level, it performs a search on the Priority Tree (PT).
Each PT node 𝑁 contains (1) a priority ordering with a set
of constraints 𝑖 ≺𝑁 𝑗 for some or of all the agent pairs
𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴 and (2) a set of minimum-cost paths paths(𝑁) =
{𝑝1 (𝑁), . . . , 𝑝𝑘 (𝑁)} that satisfy the priority ordering, i.e.,
there is no conflict between any two minimum-cost paths
𝑝𝑖 (𝑁) and 𝑝 𝑗 (𝑁) if either constraint 𝑖 ≺𝑁 𝑗 or 𝑗 ≺𝑁 𝑖

holds. Initially, the root PT node contains an empty prior-
ity ordering (i.e., no constraint between any two agents) and
one minimum-cost path for each agent. When a PT node
𝑁 is expanded, if no conflicting pair exists, then 𝑁 is de-
clared a goal node. Otherwise, PBS selects a conflicting pair
(𝑖, 𝑗) and splits 𝑁 into two child PT nodes. The two child
PT nodes extend the priority ordering with additional con-
straints 𝑖 ≺ 𝑗 and 𝑗 ≺ 𝑖, respectively. PBS then executes
a low-level search to replan the individual minimum-cost
paths of these two child PT nodes to satisfy the new priority
ordering. When generating a child PT node 𝑁1 of PT node
𝑁 , PBS first uses a topological sort to obtain an ordering of
the set of agent indices {1, . . . , 𝑘} that is consistent with the
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priority ordering. Then, according to this ordering, PBS uses
a low-level search to find an individual minimum-cost path
for each agent one by one while satisfying the constraints.
While there are many ways to search the PT, PBS performs
a depth-first search by selecting the child PT node with the
lowest SOC in the next iteration. If the low-level search can-
not find a path for an agent that satisfies the priority ordering
of the child PT nodes of PT node 𝑁 , PBS deletes this child
PT node. If PT node 𝑁 is fully expanded but no child PT
node is generated, then it is a dead-end and PBS backtracks
to its parent PT node.

Greedy Priority-Based Search
PBS is not guaranteed to find optimal solutions due to the
fixed priority ordering in each PT node (Ma et al. 2019).
Still, PBS prefers PT nodes with smaller SOCs on the high
level and SIPPS nodes with smaller 𝑓 -values on the low
level. Its search strategies are borrowed from algorithms that
guarantee optimal solutions. However, since PBS does not
guarantee optimality, expanding nodes according to costs is
unnecessary and time-consuming.

Thus, we suggest to “greedily” minimize the number of
conflicts on both levels during the search, resulting in our
new approach: Greedy Priority-Based Search (GPBS). On
the high level, GPBS uses a depth-first search on the PT but
expands the child PT nodes in an order of increasing num-
bers of conflicting pairs. This is different from PBS, which
expands them in an order of increasing SOCs. On the low
level, GPBS uses SIPPS, which always expands the SIPPS
node with the minimum number of conflicts (and breaks ties
in favor of the SIPPS nodes with the smallest 𝑓 -value) dur-
ing each iteration. Thus, given a PT node 𝑁 , the low-level
search will find a path for each agent with the minimum
number of conflicts that satisfies the priority ordering. In
short, GPBS uses the numbers of conflicts and conflicting
pairs as heuristics to guide the search on its low and high
levels, respectively.

GPBS Enhancements
In this section, we introduce several techniques to speed up
GPBS further. Some of these techniques have been intro-
duced before in different algorithmic frameworks but have
yet to be incorporated into the PBS framework.

Partial Expansions (PE)
During each iteration, PBS and GPBS generate two child
PT nodes. However, since they perform a depth-first search
on the high level and only expand the second child PT node
during backtracking, they may generate child PT nodes that
will never be expanded (e.g., because a solution was found).
Such generated-but-not-expanded PT nodes are called sur-
plus nodes (Goldenberg et al. 2014). To limit the number
of generated surplus nodes, we apply the partial expansion
(PE) technique from EPEA* (Goldenberg et al. 2014) to
GPBS, denoted as GPBS(PE). That is, when expanding a
PT node 𝑁 with the conflicting pair (𝑖, 𝑗), we only gener-
ate one child PT node 𝑁1 and continue the depth-first search

from PT node 𝑁1. The second child PT node will be gener-
ated only after backtracking back from 𝑁1 to 𝑁 . Since GPBS
needs to replan the paths of one or more agents due to the
newly added constraint while generating a child PT node,
PE is particularly effective in GPBS.

Given a PT node 𝑁 , for any agent 𝑎𝑖 ∈ 𝐴, we define its
lower-priority agents 𝐴𝐿

𝑖
(𝑁) as the set of agents that con-

tains agent 𝑎𝑖 and all agents with lower priorities than 𝑎𝑖 .
That is,

𝐴𝐿
𝑖 (𝑁) = {𝑎𝑖} ∪ {𝑎𝑙 | 𝑖 ≺𝑁 𝑙}.

Suppose GPBS expands PT node 𝑁 and generates its child
PT node 𝑁1 with the additional constraint 𝑗 ≺ 𝑖. To satisfy
the constraints in the priority ordering, the maximum num-
ber of agents that need replanning is |𝐴𝐿

𝑖
(𝑁) |. Similarly, the

maximum number of agents that need replanning while gen-
erating the other child PT node 𝑁2 with the additional con-
straint 𝑖 ≺ 𝑗 is |𝐴𝐿

𝑗
(𝑁) |. If backtracking does not occur in

PT node 𝑁 (because a solution is found in the subtree of PT
node 𝑁1), then GPBS(PE) will not generate PT node 𝑁2 and
thus save the time for replanning at most |𝐴𝐿

𝑗
(𝑁) | agents.

Target Reasoning (TR)
We adopt target reasoning (Li et al. 2020) to choose the con-
straint to add to the priority ordering of the child PT node to
expand first. Li et al. (2020) defined target conflict as a spe-
cial case of vertex conflict where one agent collides with an-
other that already stays at its goal vertex. They also showed
that resolving target conflicts earlier in CBS can speed up
the search. This technique is called target reasoning (TR).
Although GPBS(PE) is a suboptimal algorithm, we find out
that selecting and resolving target conflicts earlier than other
conflicts can also speed up its search. On the high level, we
first select a conflicting pair that contains a target conflict
while expanding a PT node. To resolve the target conflict,
we add the constraint 𝑖 ≺ 𝑗 , with agent 𝑎 𝑗 waiting at its goal
vertex 𝑔 𝑗 permanently, to the priority ordering of the child
PT node to expand first. The rationale is that agents waiting
at their goal vertices permanently may have multiple target
conflicts with other agents, and thus we resolve them at once
by replanning their paths.

Induced Constraints (IC)
We propose induced constraints as a technique for choosing
the conflicting pair for expansion. Similar to the definition of
the lower-priority agents, given a PT node 𝑁 with its priority
ordering, we can also define the higher-priority agents of 𝑎𝑖 ,
denoted as 𝐴𝐻

𝑖
(𝑁), as the set of agents that contains agent

𝑎𝑖 itself and those agents having higher priorities than agent
𝑎𝑖 . That is,

𝐴𝐻
𝑖 (𝑁) = {𝑎𝑖} ∪ {𝑎ℎ | ℎ ≺𝑁 𝑖}.

Suppose GPBS expands PT node 𝑁 and generates one of
its child PT node 𝑁 ′ with the additional constraint 𝑖 ≺ 𝑗 .
In this case, agent 𝑎𝑖 and all agents with priorities higher
than agent 𝑎𝑖 have priorities higher than agent 𝑎 𝑗 and all
agents with priorities lower than agent 𝑎 𝑗 . Thus, GPBS im-
plicitly introduces the constraints ℎ ≺ 𝑙 for any two agents
𝑎ℎ ∈ 𝐴𝐻

𝑖
(𝑁) and 𝑎𝑙 ∈ 𝐴𝐿

𝑗
(𝑁). Of course, some of these
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constraints might have already been introduced during a pre-
vious iteration and thus are not new. We call the set of new
constraints introduced by constraint 𝑖 ≺ 𝑗 the induced con-
straints (IC), denoted as 𝐼𝐶𝑖≺ 𝑗 (𝑁). That is,

𝐼𝐶𝑖≺ 𝑗 (𝑁) = {ℎ ≺ 𝑙 | 𝑎ℎ ∈ 𝐴𝐻
𝑖 (𝑁) ∧𝑎𝑙 ∈ 𝐴𝐿

𝑗 (𝑁) ∧ ℎ ⊀𝑁 𝑙}.

Intuitively, the more induced constraints we add when
generating a child PT node of 𝑁 , the fewer conflicting pairs
GPBS(PE) needs to resolve under its subtree. Also, the num-
ber of expanded SIPPS nodes may decrease since the IC re-
duce the search space. Thus, we add the constraint 𝑖 ≺ 𝑗 ,
with the largest |𝐼𝐶𝑖≺ 𝑗 (𝑁) | among all conflicting pairs (𝑖, 𝑗)
in PT node 𝑁 , to the priority ordering of the child PT node
to expand first. Meanwhile, we want to minimize the effort
of replanning the paths of agents in order to speed up the
search. Thus, if there is more than one constraint with the
maximum |𝐼𝐶𝑖≺ 𝑗 (𝑁) |, then we break ties in favor of one
with a smaller number of lower-priority agents |𝐴𝐿

𝑗
(𝑁) |.

Restart Techniques
The restart technique can be used to solve combinatorial
problems faster (Ruan, Horvitz, and Kautz 2002). In MAPF,
previous research shows that randomly choosing a total pri-
ority ordering for the agents and restarting the search from
scratch can speed up PP (Bennewitz, Burgard, and Thrun
2001). We call this restart technique random restarts (RR).
GPBS uses SIPPS, which minimizes the number of conflicts,
and finds a path for each agent one by one in the root PT
node. Thus, a different order of agents that GPBS finds paths
in the root PT node may result in a different PT, which af-
fects the conflicting pairs in the root PT node and thus also
the runtime of GPBS. Thus, an intuitive way of applying RR
to GPBS is to restart the search when PT node 𝑁 is a dead-
end and the number of backtracks exceeds a user-specified
threshold. However, RR has two drawbacks: (1) we must
replan the paths of all agents, which increases the runtime
on the low level, and (2) the resulting paths may have more
conflicting pairs, which increases the runtime on the high
level. Thus, we propose another restart technique, called soft
restarts (SR). If a PT node 𝑁 is a dead-end and the number
of backtracks exceeds a user-specified threshold, SR first re-
moves all the constraints in the priority ordering of PT node
𝑁 but keeps its set of paths paths(𝑁). Then, it continues the
search. That is, PT node 𝑁 becomes the new root PT node.
Empirically, using SR without backtracking (i.e., setting the
user-specified threshold to 0) results in better performance.

Implementation
Algorithm 1 shows the pseudo-code of our implementa-
tion of GPBS with all improvements, namely PE [Lines 8
and 32], TR [Lines 11 to 13], IC [Lines 14 to 23], and SR
[Lines 43 and 46]. We use a stack, denoted as STACK1, to
store the PT nodes. For each PT node 𝑁 , we use a priority
queue (denoted as conflicts(𝑁)) to store the conflicting pairs

1If SR is used, then we can get rid of STACK since there is
no backtracking. However, we left it in to show how to implement
Algorithm 1 without SR, namely by removing Lines 43 to 46.

Algorithm 1: GPBS with PE, TR,IC, and SR
Input: a MAPF instance, runtime limit 𝑇

1 Root←− new PT node, ≺Root←− 𝜙
2 paths(Root) ←− Find a path for each agent
3 conflicts(Root) ←− Find conflicting pairs
4 STACK←− {Root}
5 while STACK ≠ 𝜙 and runtime ≤ 𝑇 do
6 N ←− top PT node in STACK
7 if conflicts(𝑁) = 𝜙 then return paths(𝑁)
8 if 𝑁 has not yet been partially expanded then
9 𝑁1 ←− new child PT node of 𝑁 , ≺𝑁1←−≺𝑁

10 (𝑖, 𝑗) ←− conflicts(𝑁).𝑡𝑜𝑝
11 if 𝑝𝑖 (𝑁) and 𝑝 𝑗 (𝑁) has a target conflict and

TR is used then
12 if 𝑐 𝑗 (𝑁) < 𝑐𝑖 (𝑁) then Add 𝑖 ≺ 𝑗 to ≺𝑁1
13 else Add 𝑗 ≺ 𝑖 to ≺𝑁1

14 else if IC is used then
15 AH ,AL ←− zero vectors of size 𝑘
16 IC←− k × k zero matrix
17 forall (𝑖, 𝑗) ∈ conflicts(𝑁) do
18 AL [i],AL [j] ←− |AL

i (N) |, |AL
j (N) |

19 AH [i],AH [j] ←− |AH
i (N) |, |AH

j (N) |
20 IC[𝑖] [ 𝑗] ←− |IC𝑖≺ 𝑗 (𝑁) |
21 IC[ 𝑗] [𝑖] ←− |IC 𝑗≺𝑖 (𝑁) |
22 (𝑖, 𝑗) ←− argmax(𝑖, 𝑗 ) ∈conflicts(𝑁 ) IC[i] [j],

breaking ties in favor of a smaller AL [j]
23 Add 𝑖 ≺ 𝑗 to ≺𝑁1

24 else
25 Add either 𝑖 ≺ 𝑗 or 𝑗 ≺ 𝑖 to ≺𝑁1 randomly
26 paths(𝑁1) ←− Find paths that satisfy ≺𝑁1
27 if paths(𝑁1) are found then
28 conflicts(𝑁1) ←− Find conflicting pairs
29 Add 𝑁1 to the top of STACK
30 else Delete PT node 𝑁1
31 Set 𝑁 to be partially expanded
32 else
33 Remove 𝑁 from STACK
34 𝑁2 ←− new child PT node of 𝑁 , ≺𝑁2←−≺𝑁

35 𝑖 ≺ 𝑗 ←− retrieve constraint for generating the
first child PT node

36 Add 𝑗 ≺ 𝑖 to ≺𝑁2
37 paths(𝑁2) ←− Find paths that satisfy ≺𝑁2
38 if paths(𝑁2) are found then
39 conflicts(𝑁2) ←− Find conflicting pairs
40 Add 𝑁2 to the top of STACK
41 else Delete PT node 𝑁2
42 Set 𝑁 to be fully expanded
43 if 𝑁 has been fully expanded and 𝑁 has no child

PT node and SR is used then
44 Remove all constraints from ≺𝑁

45 Remove all PT nodes from STACK
46 Add PT node 𝑁 to STACK

47 return “No solution”

in path(𝑁) of PT node 𝑁 . We prioritize conflicting pairs that
have target conflicts if TR is used (breaking ties randomly).
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If TR and IC are used together, we prioritize conflicting pairs
that have target conflicts, and only compute the numbers of
IC if the top conflicting pair does not have a target conflict
(i.e., all the conflicting pairs in conflicts(𝑁) do not have tar-
get conflicts).

To start the search, we generate the root PT node Root
with an empty priority ordering. We find one path for each
agent and store them in paths(Root). We also find all the
conflicting pairs and store them in conflicts(Root). Then, we
add Root to STACK [Lines 1 to 4]. While STACK is not
empty in each iteration and the runtime has not exceeded
the user-specified runtime limit 𝑇 , we expand the PT node
𝑁 that is on the top of STACK. If there is no conflicting
pair in conflicts(N), then we return the set of paths paths(𝑁)
[Line 7]. Otherwise, if PT node 𝑁 has not yet been partially
expanded, we generate a child PT node 𝑁1 and initialize its
set of paths and priority ordering with those of its parent PT
node 𝑁 . If the first conflicting pair in conflicts(𝑁) contains
a target conflict and TR is used, we add the constraint 𝑖 ≺ 𝑗

(with respect to 𝑗 ≺ 𝑖) to the priority ordering ≺𝑁1 of child
PT node 𝑁1 if path costs 𝑐 𝑗 (𝑁) (with respect to 𝑐𝑖 (𝑁)) is
smaller than 𝑐𝑖 (𝑁) (with respect to 𝑐 𝑗 (𝑁)), meaning that
agent 𝑎𝑖 (with respect to 𝑎 𝑗 ) collides with agent 𝑎 𝑗 (with re-
spect to 𝑎𝑖) at goal vertex 𝑔 𝑗 (with respect to 𝑔𝑖) [Lines 11
to 13]. Otherwise, if IC is used, for each conflicting pair
(𝑖, 𝑗) in conflicts(𝑁), we compute its numbers of higher-
priority agents, lower-priority agents, and IC for constraint
𝑖 ≺ 𝑗 and for constraint 𝑗 ≺ 𝑖. We then add the constraint
𝑖 ≺ 𝑗 with the maximum value (and break ties in favor of
a smaller number of lower-priority agents) to priority order-
ing ≺𝑁1 of child PT node 𝑁1 [Lines 14 to 23]. After adding
a constraint 𝑖 ≺ 𝑗 to the priority ordering ≺𝑁1 of child PT
node 𝑁1, we update the set of paths paths(𝑁1) so that it satis-
fies the priority ordering ≺𝑁1 . We first find the lower-priority
agents of agent 𝑎 𝑗 , and then use SIPPS that minimizes the
number of conflicts to find a path for each agent in the lower-
priority agents. We then add 𝑁1 to STACK iff this could be
done successfully and delete it otherwise.

If PT node 𝑁 has already been partially expanded (mean-
ing that its first child PT node has already been generated),
then we remove it from STACK. We then generate the sec-
ond child PT node 𝑁2 and initialize its set of paths and prior-
ity ordering with those of its parent PT node 𝑁 . We retrieve
the constraint 𝑖 ≺ 𝑗 was added to the priority ordering of
the first child PT node of 𝑁 , add constraint 𝑗 ≺ 𝑖 to the
priority ordering ≺𝑁2 of PT node 𝑁2, and update the set of
paths paths(N2) so that it satisfies the priority ordering ≺𝑁2
[Lines 33 to 41]. If SR is used and if PT node 𝑁 has been
fully expanded but no child PT node was generated, then we
perform SR by first removing all constraints from priority
ordering ≺𝑁 and all PT nodes from STACK, and then adding
PT node 𝑁 back to STACK [Lines 43 to 46]. Lastly, since
GPBS is an incomplete algorithm, even if there is a solution
to the MAPF instance, GPBS may fail to find it, which re-
sults in returning “No solution” [Line 47]. However, GPBS
with SR will keep cycling in the while loop until its runtime
exceeds the user-specified runtime limit 𝑇 .

Empirical Evaluation
We run an experimental evaluation in order to (1) support
our design choices for TR and IC within GBPS, (2) eval-
uate the impact of different combinations of GBPS im-
provements, and (3) compare the success rates and SOCs of
GPBS with all the improvements with PP, PBS, state-of-the-
art bounded-suboptimal algorithm, namely Explicit Estima-
tion Conflict-Based Search (EECBS) (Li, Ruml, and Koenig
2021), and state-of-the-art suboptimal algorithms, namely
PBS with the merging technique (PBS w/m) (Boyarski et al.
2022) and Large Neighborhood Search (MAPF-LNS2) (Li
et al. 2022).

Although the PP and PBS algorithms use an A* search
on their low levels in the previous research (Silver 2005;
Ma et al. 2019), we use SIPPS on their low levels to min-
imize the path cost, resulting in PP𝑝 and PBS𝑝 , respectively
(the subscript “p” stands for “path costs”). Also, rather than
the path cost, we create a PBS variant that uses a SIPPS
version on it low level to minimize the number of con-
flicts, resulting in PBS𝑐 (the subscript “c” stands for “con-
flicts”). Although there are PP variants that incorporate ma-
chine learning approaches (Zhang et al. 2022), the time re-
quired for building the dataset and training the model is
more than 1 minute. Thus, such algorithms are not included
in our experiments. To evaluate the impact of our improve-
ments, we perform a study that compares GPBS, GPBS with
PE (GPBS(PE)), GPBS with PE and TR (GPBS(PE,TR)),
GPBS with PE, TR, and IC (GPBS(PE,TR,IC)), GPBS with
PE, TR, IC, and RR with user-specified threshold 200 (since
it performs the best among the thresholds 0, 20, 50, 100,
200, and 400) (GPBS(PE,TR,IC,RR)), and GPBS with PE,
TR, IC, and SR with user-specified threshold 0 (since it
performs the best among the thresholds 0, 10, 20, and 50)
(GPBS(PE,TR,IC,SR)).

Experimental Setup
We evaluate all algorithms on MAPF instances with 4-
neighbor grid maps from the MAPF benchmark suite (Stern
et al. 2019). We use three small maps of size 32 × 32
with dense obstacles, denoted as “Dense”, namely maps
random-32-32-20 (denoted as “Random”), maze-32-
32-2 (denoted as “Maze”), and room-32-32-4 (denoted
as “Room”). The number of agents on the Random map
ranges from 200 to 400 in increments of 50, and the num-
ber of agents on the other maps ranges from 100 to 300
in increments of 50. We also use three large maps, namely
maps warehouse-10-20-10-2-1 of size 161× 63 (de-
noted as “Warehouse(M)”), warehouse-20-40-10-2-
1 of size 321 × 123 (denoted as “Warehouse(L)”), and
den520d of size 530×481 (denoted as “Game”). The num-
ber of agents on the Warehouse(M) map ranges from 200 to
1,000 in increments of 200, and the number of agents on
the other maps ranges from 1,000 to 2,000 in increments of
200. Figure 4 shows the maps. We use the random sce-
nario from the benchmark suite, which yields 25 MAPF in-
stances for each map and each number of agents. Since the
benchmark suite provides only MAPF instances with at most
1,000 agents, we create 25 MAPF instances, each with 1,200
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Random Maze Room Dense Warehouse(M) Warehouse(L) Game Total
PP𝑝 0.20 0.01 0.20 0.14 0.38 0.08 0.97 0.31
PBS𝑝 0.10 0.03 0.13 0.09 0.26 0.00 0.00 0.08
PBS𝑐 0.46 0.08 0.27 0.27 0.54 0.23 0.80 0.41
PBS w/m 0.34 0.10 0.29 0.24 0.58 0.31 0.89 0.43
EECBS 0.74 0.39 0.70 0.61 0.60 0.34 0.48 0.54
MAPF-LNS2 0.94 0.47 0.78 0.73 0.83 0.38 1.00 0.73
GPBS 0.80 0.59 0.77 0.72 0.80 0.29 0.81 0.67
GPBS(PE) 0.86 0.61 0.92 0.80 0.82 0.39 1.00 0.76
GPBS(PE,ITR1) 0.69 0.33 0.58 0.53 0.66 0.40 1.00 0.62
GPBS(PE,ITR2) 0.86 0.66 0.94 0.82 0.86 0.40 1.00 0.78
GPBS(PE,TR) 0.91 0.70 0.94 0.85 0.82 0.39 1.00 0.79
GPBS(PE,TR,IIC) 0.86 0.67 0.87 0.80 0.80 0.41 0.99 0.76
GPBS(PE,TR,IC) 0.93 0.72 0.93 0.86 0.92 0.41 0.99 0.81
GPBS(PE,TR,IC,RR) 0.97 0.73 0.94 0.88 0.86 0.45 1.00 0.82
GPBS(PE,TR,IC,SR) 1.00 0.74 1.00 0.91 0.93 0.42 1.00 0.84

Table 1: Success rates over all MAPF instances with the same map. Column Dense contains the success rates over all MAPF
instances with the Random, Maze, and Room maps. Column Total contains the success rates over all MAPF instances. The
numbers in bold are the highest success rates in all columns.

Figure 1: Numbers of SIPPS node expansions (in millions)
of GPBS(PE,TR), GPBS(PE,ITR1), and GPBS(PE,ITR2)
over all MAPF instances that are successfully solved by re-
spective algorithms in Maze and Room maps.

Figure 2: Numbers of SIPPS node expansions (in millions)
of GPBS(PE,TR,IC) and GPBS(PE,TR,IIC) over all MAPF
instances that are successfully solved by respective algo-
rithms in Maze and Room maps.

to 2,000 agents for the large maps. The start and goal ver-
tices of all agents are chosen randomly. We implement all
algorithms in C++ (compiled with GCC-11.3.0) and con-
duct experiments on CentOS Linux and an AMD EPYC
7302 16-core processor with 16 GBs of memory. All of
our experiments use a 1-minute runtime limit.

Evaluation of TR and IC
TR (1) adds the constraint 𝑖 ≺ 𝑗 , with agent 𝑎 𝑗 waiting at
its goal vertex 𝑔 𝑗 permanently, to the priority ordering of the
child PT node to expand first, and (2) resolves target con-
flicts earlier than other conflicts. To evaluate TR, we create
two variants, namely Inverse TR 1 (ITR1) and Inverse TR 2
(ITR2). ITR1 adds constraint 𝑗 ≺ 𝑖 to the priority ordering
of the child PT node to expand first, and ITR2 resolves tar-
get conflicts later than other conflicts. IC adds the constraint
𝑖 ≺ 𝑗 with the largest |𝐼𝐶𝑖≺ 𝑗 (𝑁) | to the priority ordering of
the child PT node of PT node 𝑁 to expand first. To evaluate
IC, we create a variant called Inverse IC (IIC). This variant
adds a constraint with the minimum number of IC in each
iteration during PE.

As shown in Table 1, GPBS(PE,TR) has higher suc-
cess rates than GPBS(PE,ITR1) and GPBS(PE,ITR2) in
dense MAPF instances. However, the success rates of
all these algorithms are about the same on MAPF in-
stances with large maps since they have more free space.
Also, GPBS(PE,TR,IC) has higher success rates than
GPBS(PE,TR), while GPBS(PE,TR,IIC) has lower success
rates. Figures 1 and 2 show the numbers of SIPPS node
expansions on the low level for each MAPF instance that
an algorithm can successfully solve. The MAPF instances
are sorted in increasing order of their number of agents.
GPBS(PE,TR) and GPBS(PE,TR,IC) have smaller numbers
of SIPPS node expansions than their inverse versions, result-
ing in higher success rates.

Performance Comparison
Table 1 shows the success rates of the algorithms among
all MAPF instances with the same map. The total suc-
cess rate increase from 0.67 to 0.76 when we add PE to
GPBS, further to 0.79 if we add TR, even further to 0.81
if we add IC, and reaches the best to 0.84 when we add
SR. We compare GPBS with the prioritized algorithms,
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Random Maze Room Warehouse(M) Warehouse(L) Game
#call #exp #call #exp #call #exp #call #exp #call #exp #call #exp

PP𝑝 285.2 22.4 217.7 29.8 310.1 26.5 24.3 22.4 5.7 27.3 1.8 4.2
PBS𝑐 13.7 13.4 12.7 27.0 21.6 20.4 1.3 10.9 1.5 26.5 1.5 6.1
PBS w/m 18.2 13.5 9.6 21.6 20.9 18.6 1.1 9.4 1.5 27.5 1.5 5.9
EECBS 3.2 5.5 7.0 15.7 3.5 7.1 3.6 8.9 9.8 19.9 9.8 7.7
MAPF-LNS2 3.7 2.7 3.3 10.3 6.6 5.4 1.0 7.5 1.7 31.5 1.5 3.8
GPBS(PE,TR,IC,SR) 0.7 1.1 1.1 7.5 0.6 1.3 0.7 6.3 1.5 27.0 1.5 4.2

Table 2: Average numbers of calls to SIPPS (in thousands) and average numbers of SIPPS node expansions (in millions). The
numbers in bold are the lowest numbers in each column.

Figure 3: Success rates of PBS w/m, EECBS, MAPF-LNS2, and GPBS(PE,TR,IC,SR) over all MAPF instances with the same
map and number of agents.

Figure 4: SOCs (in thousands) of PBS w/m, EECBS, MAPF-LNS2, and GPBS(PE,TR,IC,SR) over all MAPF instances that
each algorithm can successfully solve, sorted in increasing numbers of their agents.

namely PP and PBS, all of them using SIPPS for the low-
level search. We compare PP𝑝 , PBS𝑝 , and PBS𝑐. Table 1
shows that GPBS has a higher total success rate than all
of the prioritized algorithms and GPBS(PE,TR,IC,SR) has
an even higher success rate, especially for dense MAPF in-
stances. Table 1 also shows the success rates of the state-

of-the-art prioritized algorithm (PBS w/m), the state-of-the-
art bounded-suboptimal algorithm with large user-specified
suboptimality bound (EECBS), and the state-of-the-art sub-
optimal algorithm (MAPF-LNS). We choose 5 as the user-
specified suboptimality bound for EECBS (i.e., the SOC
of the solution found by EECBS is at most 5 times larger
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than minimal), which is large enough to enable it to scale
to large MAPF instances (Li et al. 2022). We choose 8 as
the neighborhood size of MAPF-LNS2, which is the de-
fault value in Li et al. (2022). GPBS(PE,TR,IC,SR) has
higher success rates than PBS w/m, EECBS, and MAPF-
LNS2 with improvements of 41%, 30%, and 10% over all
MAPF instances, respectively. For dense MAPF instances,
these improvements become 67%, 30%, and 19%, respec-
tively. Table 2 shows the numbers of calls to SIPPS and
the numbers of SIPPS node expansions of each algorithm,
averaged over all MAPF instances with the same map.
GPBS(PE,TR,IC,SR) replans the paths of fewer agents than
the other algorithms, which results in fewer calls to SIPPS
and fewer SIPPS node expansions and thus speeds up the
search.

Figure 3 shows the success rates over all MAPF
instances with the same map and number of agents.
GPBS(PE,TR,IC,SR) has higher success rates than the other
algorithms, especially for MAPF instances with dense obsta-
cles and large numbers of agents. Figure 4 shows the SOCs
over all MAPF instances with the same map among those
MAPF instances that each algorithm can successfully solve.
GPBS(PE,TR,IC,SR) finds solutions with higher SOCs than
the other algorithms on dense MAPF instances. It has simi-
lar SOCs as the ones of EECBS (e.g., MAPF instances 1 to
100 on the Random map, 1 to 50 on the Maze map, and 1 to
100 on the Room map), which indicates that the SOCs are at
most 5 times larger than minimal. GPBS(PE,TR,IC,SR) has
similar SOCs as MAPF-LNS2 on large maps. These maps
have more free space than the small maps, resulting in fewer
conflicts that need to be resolved, and thus both algorithms
find similar solutions. To compare RR and SR, Figure 5
shows an example where SR solves a MAPF instance suc-
cessfully while RR with a user-specified threshold of 0 fails.
When a PT node is a dead-end and both algorithms restart
the search, their numbers of conflicting pairs may increase,
as shown in the blue peaks (in around iteration 200, 600, and
1,000) and the red curve (in around iteration 400) on the top
of Figure 5. However, RR requires finding a path for each
agent from scratch, indicating a higher number of calls of
SIPPS than SR, as shown on the bottom of Figure 5.

Relation between GPBS and MAPF-LNS2
In each iteration, both GPBS(PE,SR) and MAPF-LNS2
maintain one path for each agent, select a subset of agents,
and replan their paths while avoiding the current paths of
the other agents. In GPBS(PE,SR), this set of agents in-
cludes one of the agents corresponding to a conflict and
its lower-priority agents, while in MAPF-LNS2, this set of
agents is the “neighborhood,” which is selected with a neigh-
borhood selection strategy. Thus, GPBS with our improve-
ments can be viewed as a special case of MAPF-LNS2 with
an intelligent neighborhood selection strategy and an adap-
tive neighborhood size. Figure 5 shows the numbers of con-
flicting pairs and the cumulative numbers of calls to SIPPS
when solving a MAPF instance with MAPF-LNS2 and
GPBS(PE,TR,IC,SR), respectively. In each iteration, since
MAPF-LNS2 selects a fixed number of agents and uses PP𝑐

for replanning, it needs to replan the paths of all agents in

Figure 5: Numbers of conflicting pairs of agents and the cu-
mulative numbers of calls to SIPPS. We use MAPF-LNS2,
GPBS(PE,TR,IC,RR), and GPBS(PE,TR,IC,SR) to solve a
MAPF instance with 250 agents on the Maze map. Both
MAPF-LNS2 and GPBS(PE,TR,IC,RR) reached the run-
time limit.

the neighborhood (Li et al. 2022). Such behavior reduces the
number of conflicting pairs at the beginning of the search.
On the other hand, since GPBS(PE,TR,IC,SR) selects a con-
flicting pair and assigns constraints accordingly, although it
resolves fewer conflicting pairs than MAPF-LNS2 at the be-
ginning of the search, the cumulative number of calls can
be smaller than that of MAPF-LNS2. Table 2 shows that
GPBS(PE,TR,IC,SR) has fewer numbers of calls to SIPPS
than MAPF-LNS2 averaged over all MAPF instances on the
same maps.

Conclusion
We proposed Greedy PBS (GPBS) that aims to minimize
the number of collisions among agents as opposed to min-
imizing the sum of the travel times of all agents during the
search. Based on GPBS, we proposed a set of techniques
to speed up the search further. We adopted partial expan-
sions and target reasoning from other algorithms and pro-
posed techniques for selecting which constraints to impose
during the search and for restarting. Our empirical evalua-
tion showed that GPBS, with all our techniques, has higher
success rates than several state-of-the-art algorithms. Future
work includes developing a more sophisticated restart strat-
egy, adopting incremental search on the low level of GPBS,
and extending our techniques to other algorithms.
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