
 

   Abstract� In this paper, we propose an approach for real-

time obstacle avoidance based on a supervised Recurrent Neural 

Network (RNN). As compared with conventional rule-based 

methods, fewer hyper parameters are needed to be tuned in the 

proposed system. On the other hand, as a data-driven system, 

our approach generates training data autonomously without 

manual labeling process. One of the main features of the 

proposed system is data generation, which can provide 

thousands of training data for supervised learning using simply 

2D occupancy grid maps as input. To efficiently generate the 

path data, we utilize A* algorithm as the initial guide for the 

autonomous training process of the RNN model. After that, the 

trained model will perform local path planning to avoid 

obstacles, which is tested in practical environments. With the 

proposed approach, we can effectively reduce the training time 

while maintaining satisfactory performance. Simulated 

experiments show that the proposed system not only exhibits the 

features of A* algorithm in global aspect for path planning, but 

also performs obstacle avoidance in local aspect. As a by-product, 

the simulation results also show that the autonomously trained 

model can be successfully applied to many different scenarios. 

I. INTRODUCTION 

For autonomous mobile robots, one of the crucial abilities is 
to navigate from points to points safely and efficiently. The so-
called navigation task can be divided into two major sub-tasks: 
path planning, which is based on a priori global information, 
and obstacle avoidance, which relies on local information that 
the robot can obtain from the environment. However, while 
global path planning techniques can successfully predict a 
trajectory connecting start and goal points, the navigation task 
is prone to fail if some changes take place in the environment. 
Local obstacle avoidance prevents this by enabling the robot 
to avoid collision with obstacles in real time. Therefore, in this 
paper, we aim to design a real-time obstacle avoidance strategy 
for mobile robots. Numerous algorithms have already been 
introduced to deal with the obstacle avoidance problem, such 
as Artificial Potential Fields (APF) [1], grid-based Vector 
Field Histogram (VFH) [2][3], Elastic Band (EB) [4], and 
Dynamic Window Approach (DWA) [5]. In the following 
paragraph, we will briefly describe these technologies and 
their shortcomings.  

The APF algorithm in [1] utilizes the vector summation of 
the attractive force generated by the goal point and the 
repulsive forces from different obstacles respectively to 
control the robot�� mobility; however, this algorithm is known 

to converge to local minima, a sub-optimal solution. The VFH 
algorithm in [2] and [3] statistically represents the robot's 
environment through the so-called histogram grid, placing 
therefore great emphasis on dealing with uncertainty from 
sensor and modeling errors. The EB algorithm in [4] models 
the local path planning task as an elastic band which can be 
stretched to become a curve when an obstacle is encountered. 
The DWA algorithm in [5] generates possible local trajectories 
through sampling the angular and linear velocities at certain 
periods, which are a function of the surrounding obstacles, the 
relative distance to the goal and the robot orientation. 
Nevertheless, these rule-based algorithms require 
sophisticated approaches, even under the trivial scenario 
during the obstacle avoidance process, be taken into 
consideration. On top of that, numerous hyper parameters need 
to be tuned in order to fit the configuration of different robots. 

Other than a priori knowledge based approaches, machine 
learning approaches or the data-driven approaches in the 
literature have been considered to be powerful techniques for 
navigation. In many cases, these data-driven approaches have 
proven to offer better solutions for complex problems which 
are not easily solved by heuristic algorithms. One of the most 
well-known machine learning structures is the Recurrent 
Neural Networks (RNN), which has been successfully applied 
on several time-oriented applications and sequential data 
analysis [6]. The advantage of applying RNN rather than 
regular Fully Connected Networks (FCN) is that the former is 
able to take historical data into account [7][8]. Thus, in this 
paper, we employ RNN structure as the system model for data-
driven obstacle avoidance. In [9], a neural network-based 
method is proposed to deal with the robot navigation tasks. 
However, they only consider the current observation from the 
robot. Whereas in this work, we consider the RNN structure 
such that not only the current location and the nearby obstacles, 
but also the past few positions of the mobile robot are taken 
into account for future path prediction. 

As one of the main challenges for data-driven approaches, 
a large amount of data is usually needed for convergence. 
Therefore, data collection and organization become important 
tasks. Data-driven approaches can be divided into two 
categories based on whether the data is labeled by a human or 
not, which are supervised learning and unsupervised learning. 
Supervised learning approaches, albeit well-established, 
require a considerable quantity of data pairs, which in turn 
makes manual labeling necessary. Unsupervised techniques on 
the other hand do not require manual data labeling. One of the 
most famous among them is the Deep Reinforcement Learning 
[10][11][12]. However, this approach requires either a well-
constructed simulation environment or a time-consuming data 
collection process from different scenarios [12]. In this paper, 
one of the main contributions is that our RNN model, with the 

� �����	
����
�	��������
��������
���������
������������	��������

��	������
	����	���	
����	��������	
�������!�
��
�� 

Shao-Hung Chan, Xiaoyue Xu, Ping-Tsang Wu, Ming-Li Chiang, Li-Chen Fu, Fellow, IEEE 

Shao-Hung Chan, Xiaoyue Xu and Ping-Tsang Wu are with the Department 
of Electrical Engineering, National Taiwan University, Taipei, Taiwan (e-
mail: [r06921017, r07921094, r05921013] @ntu.edu.tw). 

Ming-Li Chiang is with the Graduate Institute of Automation Technology, 
National Taipei University of Technology, Taipei, Taiwan (e-mail: 
minglichiang@ntu.edu.tw). 

Li-Chen Fu is with the NTU Center for Artificial Intelligence & Advanced 
Robotics, Taipei, Taiwan (e-mail: lichen@ntu.edu.tw). 

2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
Bari, Italy. October 6-9, 2019

978-1-7281-4569-3/19/$31.00 ©2019 IEEE 472

Authorized licensed use limited to: University of Southern California. Downloaded on April 17,2024 at 20:37:10 UTC from IEEE Xplore.  Restrictions apply. 



aid of the A* algorithm, can be trained in an automatic manner 
instead of being trained by pair-wise, manually labeled data. 
Then, the system will generate feasible path data and execute 
regression learning. Hence, the only input of the proposed 
system are two-dimensional occupancy grid maps during the 
training stage, which means, the manually labeling process is 
no longer needed. After the training process, the system is able 
to perform obstacle avoidance in real time. In contrast to 
traditional data-driven approaches, our proposed system only 
requires two-dimensional occupancy maps which can be 
obtained from a variety of sources such as the well-established 
SLAM algorithms in [13]. 

II. SYSTEM ARCHITECTURE  

The main objective of this paper is to propose a system for 
real-time obstacle avoidance with automatic data collection 
and labeling. The system can be separated into two modes: 
training and testing. In training mode, as shown in Fig. 1, the 
input of the system is a 2D-grid map which can be obtained 
from either the top view of the indoor environment or SLAM 
algorithms. During the data collection process, the system will 
randomly choose two points in the available space (for details, 
please refer to Section III) as start and end of a trajectory. Then, 
the system will apply the A* algorithm [14] to find an 
admissible path between them. This path, along with the 
surrounding observed obstacles will form as the input tensor 
for the RNN model. On the other hand, in testing mode, the 
system will take sensor data and goal position as inputs. Then, 
it will extract features from sensor data and apply coordinate 
transformations to obtain these locations in global coordinates. 
Finally, these features in global coordinates become the input 
tensor as in training mode. 

III. METHODOLOGY 

In this section, the process of training mode and testing 
mode will be explained in detail. 

A. Training Mode 

At the beginning of the training process, the 2D occupancy 
grid map, which represents an environment by marking non-
traversable paths as a binary matrix, is required to generate 
suitable navigation strategies. This type of matrix map is often 
utilized in mapping applications for integrating sensor 
information into a discrete binary map, with free spaces being 
0 and obstacles being 1. In addition, it is useful in path 
planning for the purpose of finding collision-free paths and 
localizing robots in a known environment. Because of the 
above features, an occupancy grid map is suitable to apply the 
A* algorithm, which is used as the training data for our RNN 
model. Equation (1) shows the mathematical representation of 
a certain grid value ����  on the position (x, y) of the 2D 

occupancy grid map M: 
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In order to automatically decide global start and end points 
for the A* algorithm to generate a path, the system will first 
define the admissible space in the map. According to this free 
space, two points will be decided following the criteria listed 
in (2): 
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where ��  and ��  denote global start and end points, 
respectively. The set A refers to the admissible space that the 
robot is able to reach, which is slightly narrower than the free 
space set of the grid map. The	
��
��� function calculates the 
Euclidean distance between two points on the map with the 
purpose of avoiding paths that are not long enough to generate 
acceptable training data. As the process starts, ��  and ��  
will be generated randomly within all the admissible space. If 
the chosen points fulfill the criteria above, these will be chosen 
as the global start/end points. 

Once the global points have been determined, the system 
will generate a path by applying the A* algorithm with 
reference to the map coordinate, known as the global path. The 
role of the A* algorithm in this work serves as an instructor 
that guides the robot to learn adequate obstacle avoidance 
behaviors. Because of its outstanding performance on path 
searching ability, the robot is expected to imitate the path 
planning strategy based on local information as observed from 
the on-board sensors. As a result, the only input to train the 
system is the 2D occupancy grid map and thus the manual 
labeling process is not needed. 

The next step is to extract the information contained in the 
map. Since the key elements for path planning are the start 
point, the end point, and the obstacles in the environment, our 
objective is to determine these properties at each step so that 

 
Fig. 1 System Architecture for Training 
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the system can imitate the A* algorithm. Additionally, as the 
obstacle avoidance is a local behavior, all the information must 
be transferred from the global map coordinates to a local robot 
frame. We then segment the global path into a number of short 
paths in order for the robot to learn these behaviors from the  

local perspective. We update our path segmentation by moving 
one step further at each iteration. By implementing this 
technique, the system is able to generate the largest amount of 
training data from the limited available path. For every short 
path, the first and the last points will be considered the local 
start and end points respectively. Fig. 2 depicts a visual 
representation of the segmentation process. 

In order to find obstacles, it is intuitive to apply a pixel-
wise distance calculation due to the fact that the obstacles will 
be presented as binary value in 2D occupancy grid map. Then, 
a certain number of nearest pixels could be marked as 
obstacles as observed from the current position of the robot. 
An example of this process is shown in  Fig. 3(a), where 
black squares represent obstacles in the 2D occupancy grid 
map, red squares represent the current position of the robot and 
blue dots represent candidate obstacles. However, applying 
only pixel-wise calculation may include obstacles which might 
not be detected at the robot�s position in a real environment, 
shown as green points in Fig. 3(b). 

To solve this quandary, inspired by the work of 

Bresenham on line algorithm in the field of image processing 

[15], we implement a method to overcome this shortcoming. 

Instead of drawing practical lines, our algorithm evaluates 

whether there exist additional obstacles between the current 

position and the candidate obstacle. The algorithm draws a 

line between each candidate obstacle and the current robot 

position. If there is any additional obstacle lying along the line, 

the algorithm will ignore this candidate obstacle. Algorithm 1 

shows a pseudo-code of this algorithm. Once those obstacles  

which are impossible to detect in a real sensor setting have 

been excluded in Fig. 3(b), the final result of candidate 

obstacles is shown in Fig. 3(c). 
 The collecting features at each time step will then be 

formatted into an input tensor of the RNN model. For each 
position the robot takes in the trajectory, a concatenated vector 
will be generated. The composition of the vector is shown in 
Fig. 4. It is composed of three sections. The first section is the 
robot�s current position, and this feature enables the robot to 
understand the relationship between the previous positions and 
the current position. The second part are the local goals, i.e. 
the last position of the current sub-path. It can be observed that 
the local goal position is repeated several times in the input 
tensor. This is used to give additional weight to the goal point, 
preventing the so-called unbalanced features problem. Finally, 

the last part contains the obstacle positions, which are obtained 
from the previous step as explained in the previous section. 

In order to find the model which can best describe our 
problem, we have implemented different RNN models to test 
their performance: 

a. Sequence-to-Sequence Learning (Seq2Seq)  

b. Sequence-to-Sequence with Peek Decoder [16][17] 

c. Long Short-Term Memory (LSTM) [8] 

The difference between Sequence-to-Sequence with Peek 
Decoder and regular Sequence-to-Sequence Learning is that 
the decoder gets a chance to peek at the context vector at every 
step [17]. The loss function is designed as shown in 3 , which 

is composed of two parts: mean square error and cosine 
proximity: 

� � 	��������� � ������ � � !��" � �� 	 � 	��#
�����������

$

�%&
		 3  

in which the variable ��  is the ground truth data, ���  is the 

predicted values from the output of RNN model, ����  and 

� !� are hyper-parameters set to 10 and 0.01 respectively. 

B. Testing Mode 

In the proposed system, we assume the robot is equipped 

with a laser range finder with a 360-degree field-of-view 

 

 
Fig. 2 The process of segmenting an A* path into a number of shorter 

paths. Every two consecutive paths will only shift forward by one step. 
 

 

Fig. 4 The composition of feature vector 

   
(a) (b) (c) 

Fig. 3 Collection of inaccurate obstacle information and its correction. 
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position, blue dots denote those obstacles that satisfy the pixel wise distance 
condition and green dots denote unsuitable obstacle candidates. (a) 

Candidate obstacles depends only on pixel-wise distance. (b) Using 
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(FoV).  Therefore, the sensor information will be distance 

values relative to the robot position. The global goal 

coordinate is given to the robot as a priori information. After 

processing the sensor data, the robot will extract the necessary 

features, namely local obstacle positions, and both start point 

position and end point position of the local path relative to the 

existing map. Later on, the system creates the input tensor as 

shown in Fig. 4. as an input to the RNN model. Note that here 

we repeat the local goal positions to solve the unbalanced 

feature problem; there are other options which can be 

considered such as weighting the features. The model then 

generates the predicted path for the system. The system will 

update its position first-in-first-out and repeat the process until 

it reaches the goal. 

IV. EXPERIMENTAL RESULTS 

The experiments are performed using an Omnidirectional 
Wheeled Mobile Robot with 2D laser range finder running 
under simulated environments. The system is created using the 
Robot Operating System (ROS) with Kinetic distribution [18] 
and simulated with Gazebo 7 [19]. Results will be separated 
into three parts:  training curves, testing on different maps, 
and adding new obstacles: 

A. Training curves 

RMSProp [20] is chosen as the optimizer for our task with 

the learning rate being 0.0001. The training curves of different 

models with different pairs of input/output sequence length are 

shown in Fig. 5. Early stopping technique is applied during the 

training process with the hope of preventing overfitting. 

Besides, comparing the same model with different 

input/output sequence lengths will also lead to different loss 

values, which often increase as the output sequence length 

increases. 

B. Testing on different maps 

Analyzing the performance through training curves 
provides model candidates for suitable obstacle avoidance. On 
top of that, new paths in maps other than training are required 
in order to evaluate the robustness and accuracy of our system. 
A model for each different structure with the smallest 
validation loss is picked after the training process is done. 
Paths that are used as validation data are generated in the maps 
as shown in Fig. 6 (a). Paths coming from two new maps as 
shown in Fig. 6 (b) and Fig. 6 (c) are provided for testing these 
models. While the maps in Fig. 6 (b) and (c) are built in the 
simulated environment and real environment respectively, we 
show that the proposed system can be generalized to 2D grid 
maps from not only simulated environment but also the real 
world. In each map, the system first generates a path through 
A* algorithm soon after the start and end points are set. Then, 
it initializes its path data queue by adding the first segment of 
the path. In order to form the testing data, those points will be 
transformed into relative coordinates with respect to the 
current position. Additionally, the obstacles surrounding the 
robot will be utilized as training data for the RNN model. The 
temporary goal will be a certain point on the global path near 
the current position. The path predicted by the model will be 
pushed into the path queue, forcing the most previous data to 
be removed. The system will repeat the process until the robot 
reaches the final end point. If the predicted path encounters any 
obstacles on the way, the system will shift the temporary goal 
by a small amount, ranging around 0.01 meters, and predict the 
path once again. When the system is able to successfully reach 
the end point, performance is evaluated by measuring the 
relative distance error with respect to the path length generated 
through A* algorithm, as in 4 : 

'()
�*'	+��
),-'	'../. � 01)
234�5 � 1)
2670
1)
267  4  

TABLE I shows the mean relative distance error for 
different models with their respective maps with testing data, 
with Sequence-to-Sequence with Peek Decoder demoted as 
Peak Seq2Seq. the numbers after the name of the algorithm 
refer to the number of previous steps and the number of steps 
predicted relative to the current position of the robot. For 
instance, 30/20 means that the model uses 30 previous steps 
and outputs 20 the next 20 steps. On the other hand, there are 
some cases where the robot may be stuck on certain points or 
wander without reaching the goal point. Such cases will be 
marked as Failed. Comparing the performance among 

 
(a) Training loss for Output 

Length equal to 20 

 

(b) Validation Loss for Output 

Length  equal to 20 

 
(c) Training Loss for Output 
Length equal to 30 

(d) Validation Loss for Output 
Length equal to 30 
 

  
Fig. 5 Training curves of different models 

 

   
(a) Map1: A 2D 

occupancy grid map 

used for training 

(b) Map2: A 2D 

occupancy grid map 

used for testing 

(c) Map3: A 2D 

occupancy grid map 

used for testing 
   

Fig. 6 The 2D occupancy grid maps used in the training and testing 

condition in the experiments. (a) and (b) are constructed within the 

simulated environments using SLAM algorithm. (c) is constructed from a 
real environment using SLAM algorithms 
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different models with the same output length of 20 in the 
testing paths generated in Map 1, the regular sequence to 
sequence model with input/output length equal to 30/20, 
denoted as Seq2Seq - 30/20 in TABLE 1, reaches the end point 
successfully with the smallest relative error. On the contrary, 
Peek Seq2Seq tends to lose its track or become stuck, therefore 
it often fails to reach the goal point. As for LSTM, although it  

can complete the task, the relative error is larger than the 
sequence to sequence model. 

Fig. 7 and Fig. 8 show some of the example results sampled 
from the different tested algorithms. Fig. 8 shows the 
application of different algorithms on the same map and path. 
While Peek Seq2Seq usually fails to achieve the goal, Seq2Seq 
and LSTM are both able to complete the task. Moreover, it is 
clear that the path that the Seq2Seq algorithm outputs stays 
closer to the path generated by A* algorithm. 

Fig. 7 shows the result of applying the trained algorithms 
to other maps that have never been seen by the algorithm 
during the training process. While some architectures will 
succeed some times and fail some others, Seq2Seq - 30/20 is 
able to complete all tests successfully while at the same time 
being closest to the original A* path, as reflected in Table I. 

C. Adding new obstacles: 
  

The purpose of adding new obstacles into map is to 

simulate whether sudden changes of the environment would 

affect the performance of the algorithm and whether it could 

successfully overcome them. That is, after a path has been 

generated using the A* algorithm, there may be previously 

unseen obstacles that block its way. Therefore, the model 

should be able to act as a local path planner and avoid the 

robot collision with the additional obstacle. For this section, 

we only test those configurations with the best performance. 

As shown from the experiment conducted in the previous 

section, these are the sequence to sequence model with 

input/output length equal to 30/20 and the LSTM model with 

input/output length equal to 20/20. As shown in Fig. 9, LSTM 

starts to hover while extra obstacles appear in the map after 

the global path is planned. The Seq2Seq 30/20 configuration 

on the other hand, is able to complete the trajectory even with 

the new obstacles. 

TABLE I.  RELATIVE DISTANCE ERROR WITH RESPECT TO A* ALGORITHM 
 

Model - Input / Output length Map 1 Map 2 Map 3 

Seq2Seq  - 30/20 0.018 0.069 0.039 

Seq2Seq  - 40/30 0.128 Failed Failed 

Peek Seq2Seq [16][17] - 30/20 0.686 Failed Failed 

Peek Seq2Seq [16][17] - 30/20 Failed Failed 0.870 

LSTM [8] - 20/20 0.243 0.168 0.680 

    

    

(a) Seq2Seq-30/20 (b) Seq2Seq-40/30 (c) Peek Seq2Seq-30/20 (d) Peek Seq2Seq-40/30 (e) LSTM-20/20 

(f) LSTM-20/20 (g) Seq2Seq-30/20 (h) Seq2Seq-40/30 (i) Peek Seq2Seq-30/20 (j) Peek Seq2Seq-40/30 

Fig. 7 Testing results of different RNN sampled from models. The upper figures are the result of the experiment on map2. The lower figures are the result 

of the experiment on map3. The green line and yellow line are the same representation as Fig. 8. 

 

 

   

(a) Seq2Seq (b) Peek Seq2Seq (c) LSTM 

Fig. 8 Testing examples on different models in the same environment and 

the same global goal. Green lines indicate the A* path planning result; 
yellow lines indicate the paths the robot travels during the obstacle 

avoidance process. 
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V. CONCLUSIONS 

In this paper, we introduced a novel obstacle avoidance 
system that uses Recurrent Neural Networks with supervised 
learning. Instead of applying manually designed strategies in 
the traditional approaches, our system can learn and perform 
obstacle avoidance with fewer human efforts by automatically 
collecting and labelling the training data. Through several 
experiments, we have shown that the learning done on one 
environment can be generalized to different environments and 
successfully imitate the A* behaviors. One thing worth 
mentioning is that while we used a 2D occupancy grid map 
built in the simulator for training, testing on a map built from 
a real environment can still be handled by the proposed method. 
The proposed system opens several possibilities to implement 
different additional features into the system, such as the 
presence of humans, objects or any other features that might 
affect the obstacle avoidance task. Since both the data 
collection and labeling are automatic, it is easy to fine tune the 
model into a specific environment. On the other hand, by the 
design flexibility of the feature vectors, there are myriad 
combinations which can be used to boost the predictive 
performance of the system, which is a great advantage in 
contrast to traditional obstacle avoidance approaches. As for 
the future work, the algorithm will be tested with physical 
robots to gauge its robustness in practical applications. 
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(a) Seq2Seq - 30/20 in scenario1 (b) LSTM + 20/20 in scenario1 

 
(c) Seq2Seq - 30/20 in scenario2 (d) LSTM - 20/20 in scenario2 

  

Fig. 9 The figures show the obstacle avoidance results for Sequence-to-

Sequence model and LSTM model given two example scenarios. The 

green line and yellow line are the same representation as Fig. 8. From 
the results, we can see Sequence-to-Sequence model can successfully 

complete the task whereas LSTM model fails.  
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