

 Abstract� In this paper, we propose an approach for real-

time obstacle avoidance based on a supervised Recurrent Neural

Network (RNN). As compared with conventional rule-based

methods, fewer hyper parameters are needed to be tuned in the

proposed system. On the other hand, as a data-driven system,

our approach generates training data autonomously without

manual labeling process. One of the main features of the

proposed system is data generation, which can provide

thousands of training data for supervised learning using simply

2D occupancy grid maps as input. To efficiently generate the

path data, we utilize A* algorithm as the initial guide for the

autonomous training process of the RNN model. After that, the

trained model will perform local path planning to avoid

obstacles, which is tested in practical environments. With the

proposed approach, we can effectively reduce the training time

while maintaining satisfactory performance. Simulated

experiments show that the proposed system not only exhibits the

features of A* algorithm in global aspect for path planning, but

also performs obstacle avoidance in local aspect. As a by-product,

the simulation results also show that the autonomously trained

model can be successfully applied to many different scenarios.

I. INTRODUCTION

For autonomous mobile robots, one of the crucial abilities is
to navigate from points to points safely and efficiently. The so-
called navigation task can be divided into two major sub-tasks:
path planning, which is based on a priori global information,
and obstacle avoidance, which relies on local information that
the robot can obtain from the environment. However, while
global path planning techniques can successfully predict a
trajectory connecting start and goal points, the navigation task
is prone to fail if some changes take place in the environment.
Local obstacle avoidance prevents this by enabling the robot
to avoid collision with obstacles in real time. Therefore, in this
paper, we aim to design a real-time obstacle avoidance strategy
for mobile robots. Numerous algorithms have already been
introduced to deal with the obstacle avoidance problem, such
as Artificial Potential Fields (APF) [1], grid-based Vector
Field Histogram (VFH) [2][3], Elastic Band (EB) [4], and
Dynamic Window Approach (DWA) [5]. In the following
paragraph, we will briefly describe these technologies and
their shortcomings.

The APF algorithm in [1] utilizes the vector summation of
the attractive force generated by the goal point and the
repulsive forces from different obstacles respectively to
control the robot�� mobility; however, this algorithm is known

to converge to local minima, a sub-optimal solution. The VFH
algorithm in [2] and [3] statistically represents the robot's
environment through the so-called histogram grid, placing
therefore great emphasis on dealing with uncertainty from
sensor and modeling errors. The EB algorithm in [4] models
the local path planning task as an elastic band which can be
stretched to become a curve when an obstacle is encountered.
The DWA algorithm in [5] generates possible local trajectories
through sampling the angular and linear velocities at certain
periods, which are a function of the surrounding obstacles, the
relative distance to the goal and the robot orientation.
Nevertheless, these rule-based algorithms require
sophisticated approaches, even under the trivial scenario
during the obstacle avoidance process, be taken into
consideration. On top of that, numerous hyper parameters need
to be tuned in order to fit the configuration of different robots.

Other than a priori knowledge based approaches, machine
learning approaches or the data-driven approaches in the
literature have been considered to be powerful techniques for
navigation. In many cases, these data-driven approaches have
proven to offer better solutions for complex problems which
are not easily solved by heuristic algorithms. One of the most
well-known machine learning structures is the Recurrent
Neural Networks (RNN), which has been successfully applied
on several time-oriented applications and sequential data
analysis [6]. The advantage of applying RNN rather than
regular Fully Connected Networks (FCN) is that the former is
able to take historical data into account [7][8]. Thus, in this
paper, we employ RNN structure as the system model for data-
driven obstacle avoidance. In [9], a neural network-based
method is proposed to deal with the robot navigation tasks.
However, they only consider the current observation from the
robot. Whereas in this work, we consider the RNN structure
such that not only the current location and the nearby obstacles,
but also the past few positions of the mobile robot are taken
into account for future path prediction.

As one of the main challenges for data-driven approaches,
a large amount of data is usually needed for convergence.
Therefore, data collection and organization become important
tasks. Data-driven approaches can be divided into two
categories based on whether the data is labeled by a human or
not, which are supervised learning and unsupervised learning.
Supervised learning approaches, albeit well-established,
require a considerable quantity of data pairs, which in turn
makes manual labeling necessary. Unsupervised techniques on
the other hand do not require manual data labeling. One of the
most famous among them is the Deep Reinforcement Learning
[10][11][12]. However, this approach requires either a well-
constructed simulation environment or a time-consuming data
collection process from different scenarios [12]. In this paper,
one of the main contributions is that our RNN model, with the

� �����	
����
�	��������
��������
���������
������������	��������

��	������
	����	���	
����	��������	
�������!�
��
��

Shao-Hung Chan, Xiaoyue Xu, Ping-Tsang Wu, Ming-Li Chiang, Li-Chen Fu, Fellow, IEEE

Shao-Hung Chan, Xiaoyue Xu and Ping-Tsang Wu are with the Department
of Electrical Engineering, National Taiwan University, Taipei, Taiwan (e-
mail: [r06921017, r07921094, r05921013] @ntu.edu.tw).

Ming-Li Chiang is with the Graduate Institute of Automation Technology,
National Taipei University of Technology, Taipei, Taiwan (e-mail:
minglichiang@ntu.edu.tw).

Li-Chen Fu is with the NTU Center for Artificial Intelligence & Advanced
Robotics, Taipei, Taiwan (e-mail: lichen@ntu.edu.tw).

2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
Bari, Italy. October 6-9, 2019

978-1-7281-4569-3/19/$31.00 ©2019 IEEE 472

Authorized licensed use limited to: University of Southern California. Downloaded on April 17,2024 at 20:37:10 UTC from IEEE Xplore. Restrictions apply.

aid of the A* algorithm, can be trained in an automatic manner
instead of being trained by pair-wise, manually labeled data.
Then, the system will generate feasible path data and execute
regression learning. Hence, the only input of the proposed
system are two-dimensional occupancy grid maps during the
training stage, which means, the manually labeling process is
no longer needed. After the training process, the system is able
to perform obstacle avoidance in real time. In contrast to
traditional data-driven approaches, our proposed system only
requires two-dimensional occupancy maps which can be
obtained from a variety of sources such as the well-established
SLAM algorithms in [13].

II. SYSTEM ARCHITECTURE

The main objective of this paper is to propose a system for
real-time obstacle avoidance with automatic data collection
and labeling. The system can be separated into two modes:
training and testing. In training mode, as shown in Fig. 1, the
input of the system is a 2D-grid map which can be obtained
from either the top view of the indoor environment or SLAM
algorithms. During the data collection process, the system will
randomly choose two points in the available space (for details,
please refer to Section III) as start and end of a trajectory. Then,
the system will apply the A* algorithm [14] to find an
admissible path between them. This path, along with the
surrounding observed obstacles will form as the input tensor
for the RNN model. On the other hand, in testing mode, the
system will take sensor data and goal position as inputs. Then,
it will extract features from sensor data and apply coordinate
transformations to obtain these locations in global coordinates.
Finally, these features in global coordinates become the input
tensor as in training mode.

III. METHODOLOGY

In this section, the process of training mode and testing
mode will be explained in detail.

A. Training Mode

At the beginning of the training process, the 2D occupancy
grid map, which represents an environment by marking non-
traversable paths as a binary matrix, is required to generate
suitable navigation strategies. This type of matrix map is often
utilized in mapping applications for integrating sensor
information into a discrete binary map, with free spaces being
0 and obstacles being 1. In addition, it is useful in path
planning for the purpose of finding collision-free paths and
localizing robots in a known environment. Because of the
above features, an occupancy grid map is suitable to apply the
A* algorithm, which is used as the training data for our RNN
model. Equation (1) shows the mathematical representation of
a certain grid value ���� on the position (x, y) of the 2D

occupancy grid map M:

M

�

�
�
�

tacle is an obsgrid (x,y)if

 space is a freegrid (x,y)if
m yx

1

0
,

(1)

In order to automatically decide global start and end points
for the A* algorithm to generate a path, the system will first
define the admissible space in the map. According to this free
space, two points will be decided following the criteria listed
in (2):

}|0{,

),(

,, M� ����

�

yxyxES

thES

mmpp

dppDist
 (2)

where �� and �� denote global start and end points,
respectively. The set A refers to the admissible space that the
robot is able to reach, which is slightly narrower than the free
space set of the grid map. The	
��
��� function calculates the
Euclidean distance between two points on the map with the
purpose of avoiding paths that are not long enough to generate
acceptable training data. As the process starts, �� and ��
will be generated randomly within all the admissible space. If
the chosen points fulfill the criteria above, these will be chosen
as the global start/end points.

Once the global points have been determined, the system
will generate a path by applying the A* algorithm with
reference to the map coordinate, known as the global path. The
role of the A* algorithm in this work serves as an instructor
that guides the robot to learn adequate obstacle avoidance
behaviors. Because of its outstanding performance on path
searching ability, the robot is expected to imitate the path
planning strategy based on local information as observed from
the on-board sensors. As a result, the only input to train the
system is the 2D occupancy grid map and thus the manual
labeling process is not needed.

The next step is to extract the information contained in the
map. Since the key elements for path planning are the start
point, the end point, and the obstacles in the environment, our
objective is to determine these properties at each step so that

Fig. 1 System Architecture for Training

473

Authorized licensed use limited to: University of Southern California. Downloaded on April 17,2024 at 20:37:10 UTC from IEEE Xplore. Restrictions apply.

the system can imitate the A* algorithm. Additionally, as the
obstacle avoidance is a local behavior, all the information must
be transferred from the global map coordinates to a local robot
frame. We then segment the global path into a number of short
paths in order for the robot to learn these behaviors from the

local perspective. We update our path segmentation by moving
one step further at each iteration. By implementing this
technique, the system is able to generate the largest amount of
training data from the limited available path. For every short
path, the first and the last points will be considered the local
start and end points respectively. Fig. 2 depicts a visual
representation of the segmentation process.

In order to find obstacles, it is intuitive to apply a pixel-
wise distance calculation due to the fact that the obstacles will
be presented as binary value in 2D occupancy grid map. Then,
a certain number of nearest pixels could be marked as
obstacles as observed from the current position of the robot.
An example of this process is shown in Fig. 3(a), where
black squares represent obstacles in the 2D occupancy grid
map, red squares represent the current position of the robot and
blue dots represent candidate obstacles. However, applying
only pixel-wise calculation may include obstacles which might
not be detected at the robot�s position in a real environment,
shown as green points in Fig. 3(b).

To solve this quandary, inspired by the work of

Bresenham on line algorithm in the field of image processing

[15], we implement a method to overcome this shortcoming.

Instead of drawing practical lines, our algorithm evaluates

whether there exist additional obstacles between the current

position and the candidate obstacle. The algorithm draws a

line between each candidate obstacle and the current robot

position. If there is any additional obstacle lying along the line,

the algorithm will ignore this candidate obstacle. Algorithm 1

shows a pseudo-code of this algorithm. Once those obstacles

which are impossible to detect in a real sensor setting have

been excluded in Fig. 3(b), the final result of candidate

obstacles is shown in Fig. 3(c).
 The collecting features at each time step will then be

formatted into an input tensor of the RNN model. For each
position the robot takes in the trajectory, a concatenated vector
will be generated. The composition of the vector is shown in
Fig. 4. It is composed of three sections. The first section is the
robot�s current position, and this feature enables the robot to
understand the relationship between the previous positions and
the current position. The second part are the local goals, i.e.
the last position of the current sub-path. It can be observed that
the local goal position is repeated several times in the input
tensor. This is used to give additional weight to the goal point,
preventing the so-called unbalanced features problem. Finally,

the last part contains the obstacle positions, which are obtained
from the previous step as explained in the previous section.

In order to find the model which can best describe our
problem, we have implemented different RNN models to test
their performance:

a. Sequence-to-Sequence Learning (Seq2Seq)

b. Sequence-to-Sequence with Peek Decoder [16][17]

c. Long Short-Term Memory (LSTM) [8]

The difference between Sequence-to-Sequence with Peek
Decoder and regular Sequence-to-Sequence Learning is that
the decoder gets a chance to peek at the context vector at every
step [17]. The loss function is designed as shown in 3 , which

is composed of two parts: mean square error and cosine
proximity:

� � 	��������� � ������ � � !��" � �� 	 � 	��#
�����������

$

�%&
		 3

in which the variable �� is the ground truth data, ��� is the

predicted values from the output of RNN model, ���� and

� !� are hyper-parameters set to 10 and 0.01 respectively.

B. Testing Mode

In the proposed system, we assume the robot is equipped

with a laser range finder with a 360-degree field-of-view

Fig. 2 The process of segmenting an A* path into a number of shorter

paths. Every two consecutive paths will only shift forward by one step.

Fig. 4 The composition of feature vector

(a) (b) (c)

Fig. 3 Collection of inaccurate obstacle information and its correction.

Black �������	
���
�	 ���
������	 ��
	 ������	
���
��	
��	 ����
��	 ������
	

position, blue dots denote those obstacles that satisfy the pixel wise distance
condition and green dots denote unsuitable obstacle candidates. (a)

Candidate obstacles depends only on pixel-wise distance. (b) Using

�����������	 ����	 ������
��	
�	
�
������	 ���
�
�
�	 ���
����	 ����
�
��	 ���	
The final set of obstacles.

474

Authorized licensed use limited to: University of Southern California. Downloaded on April 17,2024 at 20:37:10 UTC from IEEE Xplore. Restrictions apply.

(FoV). Therefore, the sensor information will be distance

values relative to the robot position. The global goal

coordinate is given to the robot as a priori information. After

processing the sensor data, the robot will extract the necessary

features, namely local obstacle positions, and both start point

position and end point position of the local path relative to the

existing map. Later on, the system creates the input tensor as

shown in Fig. 4. as an input to the RNN model. Note that here

we repeat the local goal positions to solve the unbalanced

feature problem; there are other options which can be

considered such as weighting the features. The model then

generates the predicted path for the system. The system will

update its position first-in-first-out and repeat the process until

it reaches the goal.

IV. EXPERIMENTAL RESULTS

The experiments are performed using an Omnidirectional
Wheeled Mobile Robot with 2D laser range finder running
under simulated environments. The system is created using the
Robot Operating System (ROS) with Kinetic distribution [18]
and simulated with Gazebo 7 [19]. Results will be separated
into three parts: training curves, testing on different maps,
and adding new obstacles:

A. Training curves

RMSProp [20] is chosen as the optimizer for our task with

the learning rate being 0.0001. The training curves of different

models with different pairs of input/output sequence length are

shown in Fig. 5. Early stopping technique is applied during the

training process with the hope of preventing overfitting.

Besides, comparing the same model with different

input/output sequence lengths will also lead to different loss

values, which often increase as the output sequence length

increases.

B. Testing on different maps

Analyzing the performance through training curves
provides model candidates for suitable obstacle avoidance. On
top of that, new paths in maps other than training are required
in order to evaluate the robustness and accuracy of our system.
A model for each different structure with the smallest
validation loss is picked after the training process is done.
Paths that are used as validation data are generated in the maps
as shown in Fig. 6 (a). Paths coming from two new maps as
shown in Fig. 6 (b) and Fig. 6 (c) are provided for testing these
models. While the maps in Fig. 6 (b) and (c) are built in the
simulated environment and real environment respectively, we
show that the proposed system can be generalized to 2D grid
maps from not only simulated environment but also the real
world. In each map, the system first generates a path through
A* algorithm soon after the start and end points are set. Then,
it initializes its path data queue by adding the first segment of
the path. In order to form the testing data, those points will be
transformed into relative coordinates with respect to the
current position. Additionally, the obstacles surrounding the
robot will be utilized as training data for the RNN model. The
temporary goal will be a certain point on the global path near
the current position. The path predicted by the model will be
pushed into the path queue, forcing the most previous data to
be removed. The system will repeat the process until the robot
reaches the final end point. If the predicted path encounters any
obstacles on the way, the system will shift the temporary goal
by a small amount, ranging around 0.01 meters, and predict the
path once again. When the system is able to successfully reach
the end point, performance is evaluated by measuring the
relative distance error with respect to the path length generated
through A* algorithm, as in 4 :

'()
�*'	+��
),-'	'../. � 01)
234�5 � 1)
2670
1)
267 4

TABLE I shows the mean relative distance error for
different models with their respective maps with testing data,
with Sequence-to-Sequence with Peek Decoder demoted as
Peak Seq2Seq. the numbers after the name of the algorithm
refer to the number of previous steps and the number of steps
predicted relative to the current position of the robot. For
instance, 30/20 means that the model uses 30 previous steps
and outputs 20 the next 20 steps. On the other hand, there are
some cases where the robot may be stuck on certain points or
wander without reaching the goal point. Such cases will be
marked as Failed. Comparing the performance among

(a) Training loss for Output

Length equal to 20

(b) Validation Loss for Output

Length equal to 20

(c) Training Loss for Output
Length equal to 30

(d) Validation Loss for Output
Length equal to 30

Fig. 5 Training curves of different models

(a) Map1: A 2D

occupancy grid map

used for training

(b) Map2: A 2D

occupancy grid map

used for testing

(c) Map3: A 2D

occupancy grid map

used for testing

Fig. 6 The 2D occupancy grid maps used in the training and testing

condition in the experiments. (a) and (b) are constructed within the

simulated environments using SLAM algorithm. (c) is constructed from a
real environment using SLAM algorithms

475

Authorized licensed use limited to: University of Southern California. Downloaded on April 17,2024 at 20:37:10 UTC from IEEE Xplore. Restrictions apply.

different models with the same output length of 20 in the
testing paths generated in Map 1, the regular sequence to
sequence model with input/output length equal to 30/20,
denoted as Seq2Seq - 30/20 in TABLE 1, reaches the end point
successfully with the smallest relative error. On the contrary,
Peek Seq2Seq tends to lose its track or become stuck, therefore
it often fails to reach the goal point. As for LSTM, although it

can complete the task, the relative error is larger than the
sequence to sequence model.

Fig. 7 and Fig. 8 show some of the example results sampled
from the different tested algorithms. Fig. 8 shows the
application of different algorithms on the same map and path.
While Peek Seq2Seq usually fails to achieve the goal, Seq2Seq
and LSTM are both able to complete the task. Moreover, it is
clear that the path that the Seq2Seq algorithm outputs stays
closer to the path generated by A* algorithm.

Fig. 7 shows the result of applying the trained algorithms
to other maps that have never been seen by the algorithm
during the training process. While some architectures will
succeed some times and fail some others, Seq2Seq - 30/20 is
able to complete all tests successfully while at the same time
being closest to the original A* path, as reflected in Table I.

C. Adding new obstacles:

The purpose of adding new obstacles into map is to

simulate whether sudden changes of the environment would

affect the performance of the algorithm and whether it could

successfully overcome them. That is, after a path has been

generated using the A* algorithm, there may be previously

unseen obstacles that block its way. Therefore, the model

should be able to act as a local path planner and avoid the

robot collision with the additional obstacle. For this section,

we only test those configurations with the best performance.

As shown from the experiment conducted in the previous

section, these are the sequence to sequence model with

input/output length equal to 30/20 and the LSTM model with

input/output length equal to 20/20. As shown in Fig. 9, LSTM

starts to hover while extra obstacles appear in the map after

the global path is planned. The Seq2Seq 30/20 configuration

on the other hand, is able to complete the trajectory even with

the new obstacles.

TABLE I. RELATIVE DISTANCE ERROR WITH RESPECT TO A* ALGORITHM

Model - Input / Output length Map 1 Map 2 Map 3

Seq2Seq - 30/20 0.018 0.069 0.039

Seq2Seq - 40/30 0.128 Failed Failed

Peek Seq2Seq [16][17] - 30/20 0.686 Failed Failed

Peek Seq2Seq [16][17] - 30/20 Failed Failed 0.870

LSTM [8] - 20/20 0.243 0.168 0.680

(a) Seq2Seq-30/20 (b) Seq2Seq-40/30 (c) Peek Seq2Seq-30/20 (d) Peek Seq2Seq-40/30 (e) LSTM-20/20

(f) LSTM-20/20 (g) Seq2Seq-30/20 (h) Seq2Seq-40/30 (i) Peek Seq2Seq-30/20 (j) Peek Seq2Seq-40/30

Fig. 7 Testing results of different RNN sampled from models. The upper figures are the result of the experiment on map2. The lower figures are the result

of the experiment on map3. The green line and yellow line are the same representation as Fig. 8.

(a) Seq2Seq (b) Peek Seq2Seq (c) LSTM

Fig. 8 Testing examples on different models in the same environment and

the same global goal. Green lines indicate the A* path planning result;
yellow lines indicate the paths the robot travels during the obstacle

avoidance process.

476

Authorized licensed use limited to: University of Southern California. Downloaded on April 17,2024 at 20:37:10 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSIONS

In this paper, we introduced a novel obstacle avoidance
system that uses Recurrent Neural Networks with supervised
learning. Instead of applying manually designed strategies in
the traditional approaches, our system can learn and perform
obstacle avoidance with fewer human efforts by automatically
collecting and labelling the training data. Through several
experiments, we have shown that the learning done on one
environment can be generalized to different environments and
successfully imitate the A* behaviors. One thing worth
mentioning is that while we used a 2D occupancy grid map
built in the simulator for training, testing on a map built from
a real environment can still be handled by the proposed method.
The proposed system opens several possibilities to implement
different additional features into the system, such as the
presence of humans, objects or any other features that might
affect the obstacle avoidance task. Since both the data
collection and labeling are automatic, it is easy to fine tune the
model into a specific environment. On the other hand, by the
design flexibility of the feature vectors, there are myriad
combinations which can be used to boost the predictive
performance of the system, which is a great advantage in
contrast to traditional obstacle avoidance approaches. As for
the future work, the algorithm will be tested with physical
robots to gauge its robustness in practical applications.

VI. ACKNOWLEDGMENT

This research was supported by the Joint Research Center

for AI Technology and All Vista Healthcare under Ministry of

Science and Technology of Taiwan, and Center for Artificial

Intelligence & Advanced Robotics, National Taiwan

University, under the grant numbers of 108-2634-F-002-016

108-2634-F-002-017 and 108-2218-E-027-014.

REFERENCES

[1] C. W. �������	�������	��
�	��������	!����	"�
�#�����	��
��
���	$���
��%	

in Proc. 1989 IEEE Int. Conf. on Robotics and Automation (ICRA),
1989, pp. 316+321.

[2] J. Borenstein and Y. <�����	 �=��	 >��
��	 $���
	 ?��
�����	 - Fast

Obstacle Avoidance for Mobile Robot��%	IEEE Trans. Robot. Autom.,
vol. 7, no. 3, 1991, pp. 278+288.

[3] I. Ulrich and J. ������
����	 �>$?QZ	 \����	 ^��
����	 "���
����	 _�
�	

Look-"���
	>���#���
����%	��	Procs. 2000 IEEE Int. Conf. on Robotics
and Automation (ICRA), 2000, pp. 2505+2511.

[4] S. Quinlan and O. <��
���	�~���
��	���
�Z	������
���	��
�	��������	

��
	 ���
����%	 ��	 Proc. 1993 IEEE Int. Conf. on Robotics and
Automation (ICRA), 1993, pp. 802+807.

[5] R. ����
�	�=��	�������	���
�_	"�������	
�	���������	"���
�����%	

IEEE Robot. Autom. Mag., vol. 4, 1997, pp. 23+33.
[6] A. Graves, A. -R. Mohamed, and G. ?��
���	�������	�������
���	_�
�	

����	��������
	������	��
_�����%	��	Procs. 2013 IEEE Int. Conf. on

Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 6645+
6649.

[7] I. Sutskever, O. Vinyals, and Q. V. \��	���������	
�	��������	\�������	

_�
�	������	��
_�����%	��	Advances in Neural Information Processing
Systems 27, 2014, pp. 3104+3112.

[8] S. Hochreiter and J. �����
������	�\���	����
-=���	�������%	Neural

Comput., vol. 9, no. 8, 1997, pp. 1735+1780.
[9] B. Ko, H. J. Choi, C. Hong, J. H. Kim, O. C.Kwon, and C. D. Yoo,

�������	��
_���-based autonomous navigation for a homecare mobile

����
�%	��	Procs. of the 2017 IEEE Int. Conf. on Big Data and Smart
Computing (BigComp), 2017, pp. 403+406.

[10] A. Faust, H. -T. Chiang, N. Rackley, and L. =�����	��������	^��
����	

"���
����	 _�
�	 �~"�\�Z	 ��~#������	 "��������	 ����#�������
	
\��������%	 ��	 Second Annual Machine Learning in Planning and

Control of Robot Motion Workshop at 2015 IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2015.
[11] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, F. -F. Li, and A.

Farhadi, �=����
-driven Visual Navigation in Indoor Scenes using Deep

����#�������
	 \��������%	 ��	 2017 IEEE Int. Conf. on Robotics and
Automation (ICRA), 2017, pp. 3357+3364.

[12] S. -H. Hsu, S. -H. Chan, P. -T. Wu, K. Xiao, and L. -C. $��	����
����
�
	

Deep Reinfo������
	 \�������	 ����
	 ��
���	 >�����	 ������
����%	 ��	
2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

2018, pp. 2532+2537.

[13] G. Grisetti, C. Stachniss, and W. ������
�	��������
	=���������	#��	
Grid Mapping with Rao-Blackwellized Partic��	$��
����%	 IEEE Trans.

Robot., vol. 23, no. 1, 2007, pp. 34+46.

[14] P. E. Hart, N. J. Nilsson, and B. ��������	 �"	 $�����	 �����	 #��	
��	
Heuristic Determination of Minimum Cos
	��
���%	 IEEE Trans. Syst.

Sci. Cybern., vol. SSC-4, no. 2, pp. 100+107, 1968.
[15] J. ����������	�"	\�����	"�����
��	#��	��������
��	����
��	�������	�#	

��������	"����%	Commun. ACM, vol. 20, no. 2, pp. 100+106, 1977.

[16] K. Cho, B. v. Mërrieboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio, �\�������	������	����esentations using RNN

Encoder-����
��	 #��	�
�
��
����	�������	=������
����%	 ��	 Proc. 2014

Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1724+1734.

[17] F. �������	 ���������	
�	 ��������	 \�������	 _�
�	 <�����%	 �^�������	

Available: https://github.com/farizrahman4u/seq2seq.
[18] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E.

Berger, R. Wheeler, and A. Ng, ��^�Z	��	����-source Robot Operating

���
��	�������%	��	ICRA Workshop on Open Source Software, 2009.
[19] N. Koenig and A. ?�_��
�	�������	��
	!��	����
����	#��	�������	"�	

Open-Source Multi-����
	 ������
���%	 ��	 Proc. 2004 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2004, vol. 3, pp. 2149+2154.

[20] S. ��
���	�"�	�������_	�#	���
���
	
�����
	��
�����
���	������
����%	

2016, pp. 1+14,.

(a) Seq2Seq - 30/20 in scenario1 (b) LSTM + 20/20 in scenario1

(c) Seq2Seq - 30/20 in scenario2 (d) LSTM - 20/20 in scenario2

Fig. 9 The figures show the obstacle avoidance results for Sequence-to-

Sequence model and LSTM model given two example scenarios. The

green line and yellow line are the same representation as Fig. 8. From
the results, we can see Sequence-to-Sequence model can successfully

complete the task whereas LSTM model fails.

477

Authorized licensed use limited to: University of Southern California. Downloaded on April 17,2024 at 20:37:10 UTC from IEEE Xplore. Restrictions apply.

