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摘要 

近年來，由於人口老化與少子化等因素，老人長照以及居家陪伴等需求日顯重

要，與之相對的社交與陪伴型機器人的相關研究隨之增加。這些機器人更展現了在

未來高齡化社會中的潛在應用能力。為了能使機器人輔助家庭成員與年長者的生

活起居，基本的功能包括強健的定位能力、導航能力、與感測能力。此外，機器人

亦應該具備能基於影像及語音等感測資訊產生對環境的即時認知或推論。換言之，

機器人要能評估使用者的狀態與語言指示並進而完成人機互動領域中的社交與服

務的任務。因此，一個動態、長時間的決策系統能夠使社交陪伴機器人自動產生合

適的動態任務與動作規劃 (Task And Motion Planning, TAMP)。另一方面，為了使

社交機器人能夠趨向實際應用的階段甚至更加地普及於未來的居家環境當中，該

決策系統必須將有限的運算資源以及有效率的運算列入考量。 

在本篇研究當中，基於動態任務與動作規劃，我們透過機器人感知提出了一個

以任務導向為主之導航決策系統來令機器人完成複雜的動態多社交任務。為了組

織這些社交任務，我們提出了一個具有隨時間遞減獎勵機制的指令架構。此外，我

們將室內環境模擬成圖以定位指令，並提出一個相對應之動態任務規劃演算法。該

演算法藉由最佳化累積獎勵使得機器人能同時考量指令優先度以及總執行時間。

至於感知部分，視覺上除了人物定位及辨識之外，我們提出一個階層式子系統來辨

識人類行為，並在聽覺上設計一個結合語音與情緒辨識的子系統。在有限運算資源

之下，本系統致力於結合深度學習框架與啟發式演算法以同步處理感知與決策資

訊。得力於本系統，社交型機器人有能力滿足每位使用者的需求，並在多人環境中

充分展現出有效率的人機互動。 

 

關鍵字：任務導向導航系統、動態任務與動作規劃、機器人感知、人機互動 
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ABSTRACT 

In recent years, researches related to social and companion robots have gradually 

increased, showing its importance in the field of daily healthcare and human 

companion. Those robots also demonstrate potential applications especially in the 

society where elderly people growing year by year. In order for robots to provide 

assistance toward family members and elders in a household environment, the 

prerequisite capabilities are to perform robust localization, navigation, and sensing 

ability. In addition to that, the robots should also be capable of perceiving the 

environment and human beings based on the visual and audio sensor data. In other 

words, robots should know how to estimate human status and understand his/her verbal 

commands so as to complete social and service tasks in the area of intelligent human 

robot interaction. More practically, a dynamic, any-time decision making system is 

necessary for social and companion robots to generate adequate task and motion 

planning (TAMP) over a long period of time. On the other hand, with the purpose of 

making robots widely deployed in the future, efficient calculation under limited 

computation resource should be taken into consideration while designing the overall 

system. 

In this thesis, inspired from the Dynamic TAMP framework, we propose a novel 

task-oriented navigation system for robots to achieve social interaction tasks with the 

help of perceptions. To organize these social tasks, we propose an instruction structure 

consisting decaying reward with regard to priorities and time. Moreover, we model the 

indoor scenario into a graph structure to allocate instructions, and propose a task 

planning algorithm that considers not only the priorities among multiple tasks but also 

time efficiency through optimizing the accumulative reward. As for the perceptions 
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that help assign priorities of instructions, we propose a sub-system for human 

localization, identification, and framewise hierarchical activity recognition in the 

visual aspect. As for verbal perception, we design a sub-system to understand human 

words as well as sentiments. Note that under the limited computational speed and 

resource, the system aims to simultaneously perform perception and decision making 

using both deep learning modules and heuristic algorithms. With the help of our system, 

the social robot is able to not only meet human requirements but also interact with 

people in a multiple-human environment efficiently, achieving sophisticated human 

robot interaction (HRI). 

 

Keywords: Task-oriented Navigation System, Dynamic Task and Motion Planning, 

Robot Perception, Human Robot Interaction 
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Chapter 1 Introduction 

In this chapter, we introduce the overall concept of our proposed system. The content 

includes motivation, research objective, contribution, and the overview of the thesis. 

 

1.1 Motivation 

Robotics has been one of the vigorous research in engineering. Due to numerous 

potential applications in both industrial environment and field of home care, robots are 

regarded as a suitable platform for carrying cutting-edge technology so as to serve the 

human society better. On the other hand, thanks to the advances in computing, increasing 

speed and storage, artificial intelligence as well as deep learning have successfully 

demonstrated the power in solving complicated problems. Therefore, how to realize those 

methods into robots has already been one of the crucial and fascinating researches in the 

field of robotics. 

Among all robotics researches, one of the gradually increasing topics is the social 

and companion robots. Due to aging of the society and decrease of children, such robots 

provide aids to household environment including regular family and senior center. The 

resulting state apparently is an integration among robotics, perception, and human robot 

interaction (HRI). As a result, an efficient system that consists of multiple applications is 

definitely required so that robots can be deployed into our human society realistically. In 

our scenario, the objective is to enable a social and companion robot to accomplish 

various tasks from different users while the robot is navigating in a household 

environment. On top of that, the robot tries to generate tasks on its own so as to assist 

human beings actively. 

Nevertheless, in contrast to our approach, the current research often focuses on 
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optimizing a certain function instead of taking overall system into consideration. For 

example, deep learning approaches in the field of robot perception concentrate on 

reaching high accuracy in dataset for specific usage such as action recognition. However, 

such system may consume a great deal of computational resources merely for a single 

application. For implementation in, say, senior center, this is somehow inefficient as more 

computers may occupy too much space and cause too excessive power consumption. 

What’s worse, more human efforts are required for maintaining the functionality of the 

whole system. Rather, we prefer to allocate resources for deep learning algorithms which 

deal with more general functions, but then achieve specific goals through heuristic 

methods on the basis of those functions. 

Take activity recognition for instance, deep learning models [1][2] have remarkable 

performance, whose accuracy exceeds 90%, on open-source datasets like UCF-101[3]. 

Nonetheless, these methods are often offline, require powerful hardware, and thus 

become impractical for real-world demonstrations. On the contrary, we utilize deep 

learning models to find objects and human skeleton which are more general for different 

applications and design heuristic probability model to achieve framewise real-time 

activity recognition on top of them. Note that these detection results from deep learning 

approaches can also be utilized to other applications like human localization and 

identification. With high accuracy and robustness on fundamental deep learning 

techniques, our robot system can react to different circumstances properly in time. 

In addition, traditional planning algorithms often considers constant reward values 

and deadlines such as traveling salesman with profits [4][5]. However, such algorithms 

may lead to unpleasant user experience in HRI. Thus, we here take into account that robot 

should accomplish every instruction and try its best to serve everyone effectively and 

efficiently. 
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1.2 Challenges 

First of all, designing a comprehensive system for a robot to interact with human 

rationally requires numerous techniques, not to mention the limited computational power. 

Traditionally, most robot systems aim to complete relatively simple tasks that are far from 

suitable human interaction. Secondly, to make the robot more practical in assisting human 

daily lives, the system should not only enable the robot to timely perceive the environment 

but also react to human requests as fast as possible. Therefore, framewise visual 

perception methods and efficient transformation between perception and decision making 

are challenges for us to push the robotic research into a new era. 

Last but not the least, the robot needs to model the environment such that the 

problem formulation of completing human tasks can be analyzed in a heuristic way. On 

top of that, an algorithm for optimally scheduling those tasks as well so as making the 

system perform smoothly is required. It is worth mentioning that elderly care can be 

regarded as an activity that requires not only performance but also safety. To address such 

caring applications, apparently robustness and error handling in the robot programming 

will definitely be needed. Thus, only when integrating all the components under limited 

computational resource and timing analysis can the robot become “considerate” in the 

indoor environment. 

 

1.3 Contributions 

In this thesis, we propose a novel system that integrates both sensor perceptions as 

well as decision making such that the social and companion robot is capable of serving a 

group of people in a household environment. Through our system, the robot can react to 

human as soon as it receives requests. Furthermore, while dealing with multiple tasks, the 
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robot can not only sort them intelligently but also complete them one by one reliably. The 

major contributions are listed as follows: 

 We propose a task-oriented navigation system combining the robot perceptions and 

decision making in order to achieve complicated human robot interaction. Through 

the proposed system, the robot is capable of organizing tasks concerning both human 

needs and its own status. 

 To formulate those tasks, we propose an instruction structure composed of decaying 

reward with regard to priorities and time. Unlike traditional algorithms, our system 

can accomplish every instruction efficiently without deadline limitation. 

 To allocate instructions, we model the indoor scenario into a graph structure. The 

nodes are semantic locations containing instructions, and edges are Euclidean 

distances between nodes. As the reward decaying with time, the overall system can 

be viewed as an optimization process that aims to maximize the reward while 

minimizing the navigation path. Therefore, we take not only the priority among 

multiple tasks but also time efficiency of instruction execution into consideration. 

 We propose a hierarchical structure for visual perception that takes human-object 

interaction into account to recognize human activities in real time. Moreover, a 

verbal perception system is proposed for understanding human requirements as well 

as sentiments. These perceptions can be applied to assigning priorities of instructions. 

 

1.4 Thesis Overview 

The thesis is organized as follows: Chapter 2 introduces the background and related 

works of the system, including the robot perceptions, task planning, and motion planning, 

which belong to the field of decision making in robotics and are implemented to become 
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our system framework. In Chapter 3, we propose the visual and verbal perception methods 

to achieve human localization, human identification, and action recognition on the basis 

of techniques using deep-learning based object detection and skeleton detection networks. 

Chapter 4 reveals the formulation of the perceptions, modeling of the scenario, and the 

proposed algorithm that solves the task planning problem. Moreover, the complexity of 

the problem and the accuracy of the proposed algorithm are also discussed. Chapter 5 

discusses the simulation results and the real world experiments. For the perception part, 

we evaluate the human localization, identification, and the action recognition frame by 

frame. On the other hand, as for the decision making, not only did we discuss the 

performance of our task planner but also its efficiency. Besides, we compare the human 

scheduling and our proposed task planner to show if the system is user-friendly or not. 

That is to say, whether our robot is “considerate” enough. Finally, Chapter 6 is the 

conclusion and the future works that can be extended based on our work. 
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Chapter 2 Background and Related Works 

In this chapter, we will discuss some background and works that are related to our 

work. Specifically, there are mainly two foci of our thesis: one is the perception system 

for the robot to build connection to the indoor environment; another is the task and motion 

planning, known as TAMP in the field of robotics, that includes decision making process 

for robot to respond to requests. 

 

2.1 Robot Perceptions 

In this section, how robot perceives the world is introduced. The following texts 

contain introduction and perceptions on the basis of different sensors, including laser-

range finder, visual as well as verbal sensors. Finally, a brief discussion about how 

perceptions affect robot behaviors is given. 

 

2.1.1 Introduction to Robot Perceptions 

 Figure 2-1 shows some basic modules of autonomous robots, from which one can 

easily understand that the main objective of perception is to transfer sensor data into 

semantic meaning. As social robots serve mostly in household environment, it is 

necessary for them to understand, interpret, and represent the surrounding efficiently and 

consistently [6]. Thanks to advanced hardware that digitalizes information from the 

continuous environment, robotics engineers can design further algorithm to link various 

 

Figure 2-1 Basic modules of autonomous robots 
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sensory data and come up with semantics, which normally can be categorized as modeling, 

classification, and recognition. Without these semantics, it is hardly possible for the 

autonomous robot to make suitable decisions. For instance, without laser perception 

modules like Simultaneous Localization and Mapping (SLAM) algorithms that model the 

environment and recognize special relations through creating maps, it is difficult for 

robots to localize themselves and navigate to the desired destinations [7].  

 

2.1.2 Laser Perceptions: Simultaneous Localization and Mapping 

In order to move safe and sound in the real-world environment, it is crucial for a 

robot to realize where am I and where have I been [8]. Researches that deal with these 

problems can be viewed as the Simultaneous Localization and Mapping, also known as 

SLAM in brief. Typically, SLAM can be decomposed into two portions: Localizing and 

Mapping. The purpose of localization is to let the robot be able to estimate its position 

given the currently built map as well as the on-line sensory data. On the other hand, the 

mapping procedure is to provide geometry relations among received sensory data so that 

the robot is able to memorize the structure of the environment. Through processing 

“localization” and “mapping” simultaneously, the robot can map sensory data to precise 

location while recognizing its own location at the same time [9]. 

Among all the available sensors, the two dimensional Laser Range Finder (LRF) 

provides precise geometry information with relatively lower cost than those of the sensors 

like Light Detection and Ranging (LiDAR) and is thus widely used for implementing 

SLAM algorithms. Note that another commonly-used sensor is the camera that performs 

the so-called visual SLAM [10]. Though visual SLAM may provide more semantic 

features, its geometry information is usually not as accurate as that of laser-based SLAM 

and takes more time to come up with the resulting map and the robot location to converge. 
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For example, the state-of-the-art visual SLAM system, ORB-SLAM [11][12], easily lose 

track while the social robot is interacting with human. Such imperfection may lower the 

capability for real-world application of visual SLAM. 

On the other hand, laser-based SLAM has shown impressive improvement after 

three decade development [13]. Through representing the uncertainty of the environment 

with probability theories, scan matching, occupancy girds, and numerous filters can be 

applied to SLAM solutions [14]. For instance, in [15], the authors proposed a laser-based 

SLAM system on the basis of Rao-Blackwellized particle filter, where computing can be 

speed up using multi-thread of a computer with multi-processor architecture as proposed 

in [16]. In [17], the authors proposed a laser-based SLAM system through graph 

optimization [18]. These methods developed robust and precise laser-based SLAM 

system and remain popular even till now. The SLAM package we implement for the 

proposed system will be discussed more in Section 4.1.1. 

 

2.1.3 Visual Perceptions: Object Detection and Object Affordance 

On the contrary to two-dimensional LRF that provides geometry information over a 

plane, the visual RGBD camera equipped on the robot provide more detailed semantic 

features for robot to extract useful information for sophisticated decision making modules. 

In the proposed system, one of the most crucial visual perception is the real-time object 

detection, meaning that not only classifying certain objects but also locating them on the 

image coordinate frame-by-frame. With the existence of deep convolutional neural 

networks, works that aim to solve this problem make significant progress, such as the 

well-known Fast R-CNN [19] and You Only Look Once (YOLO) [20][21][22]. Those 

works both extract the bounding boxes of detected objects and reveal the confidence of 

the results, which can be further utilized for mapping objects on the SLAM systems or 
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recognize scene according to their semantics. 

Among all semantics provided from the objects, we regard the affordance as the most 

important portion for our system. The original concept of affordance came from 

psychologist, James J. Gibson, in 1966 [23], which indicates the functionality of objects 

and how human interacts with the objects. Take a sofa for example, the affordance of the 

sofa can be a sitting tool for human to watch television. On the other hand, it also contains 

the affordance as a furniture for people to take a nap. Thus, the robot can infer more 

semantic information from the environment with the assistance of affordance, especially 

for heuristic human action and activity detection. In [24], the robot predicts human actions 

through probability model on the basis of affordance. In [25], the robot utilizes the 

anticipatory temporal conditional random field (ATCRF) to infer special-temporal 

relation of human activities in the environment. 

 

2.1.4 Summary of Robot Perceptions 

The robot perception module provides a connection between raw data from the 

hardware sensor and the decision module. Through modeling, classification and 

recognition, robot can explore more in the environment and further generate more delicate 

decisions based on the perception results. Therefore, beside the hardware abilities, the 

perception module can be viewed as the foundation of an autonomous robotic system. 

 

2.2 Task and Motion Planning (TAMP) 

In this section, we will introduce the background and the concept of TAMP, which 

can be regarded as the major decision module in our social robot system. The content 

includes how TAMP betters the performance of mobile robot manipulation and human 

robot interaction (HRI). 
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2.2.1 Introduction to TAMP 

In the field of autonomous robotics, the ultimate goal is to make robots behave 

intelligently in the real world environment. Among all these subjects that combines 

Artificial Intelligence (AI) and Robotics, planning is one of the critical components for a 

robot to complete numerous tasks and instructions robustly and efficiently. Traditional 

planning problems often emphasize on finding a collision-free motion for the robot to 

transfer from one state to another given a task. Such planning solvers are generally 

referred to as the motion planning [26]. More precisely, the purpose of motion planning 

serves as a connection between robot commands and actuators. Robot platforms can be 

chosen from either robotic arms or mobile robots, and the motion planner will generate a 

suitable trajectory which avoids obstacles in the continuous space given a specific goal 

and the configurations of robots. For example, the well-known A* algorithm [27], D* 

Lite algorithm [28], and Rapidly-Exploring Random Trees [29] all tend to search for a 

collision-free trajectory given the current environmental state observed from the robot. 

Thus, the motion planning can be viewed as a command dispatcher for robot manipulation 

and navigation, as robot actuators complete a series of motions under the constraints of 

motion planners. 

Nevertheless, to deploy robots into real-world environments like industrial factories, 

rescuing places, or senior center in order to complete a series of tasks as well as to manage 

the overall situations, it is definitely not enough for a robot to only have the capability of 

motion planning. To figure out why, we know that motion planning algorithms often 

concentrate on solving “continuous” problems, which will be extremely time-consuming 

if the task requires long-term motions [30]. What’s more, the more complex a task is, the 

more computational resources will be need so as to generate a global optimal trajectory 

due to the accumulative constraints. On top of that, as the number of tasks increases, 



doi:10.6342/NTU201902426

 11 

motion planning lacks an efficient way to organize different tasks, leading to time-

consuming executions or unsatisfied user experience (UX). In short, these factors not only 

lower the efficiency of robots but also make real-world application more difficult.  

As a consequence, designing a mechanism which can connect the given tasks and 

the motion planner becomes an important topic to deal with various real-world situations 

systematically. Studies of these task-level robot systems can be dated back to 1961 [31]. 

Since then, one of the solutions among all is to define a set of discrete motions that are 

constantly executed under the circumstances of user’s performance, and to design an 

algorithm that is able to complete given tasks by permutations and combinations of these 

motions [32]. These can be referred to as task planning, which takes symbolic tasks as 

inputs, sorts them, and generates a sequence of discrete motions [33].  

Given the description of these two planning algorithms so far, their combination 

forms a hierarchical architecture, known as task and motion planning, or TAMP in brief 

[34]. That is, provided with a series of tasks, the task planner transforms them into a 

motion sequence and then pass it to the motion planner, which then generates collision-

free paths for actuators to execute. Through this structure, the robot can generate the near-

optimal solutions with computational time and resource far lower than those set for the 

global optimal motion planning. Furthermore, the system can provide a more user-

friendly interface since the robot can extract semantic meanings during the task-level. 

That is to say, human, especially the elders, neither are required to give specific goal 

position nor to learn programming skills in order to interact with the robot. The overall 

architecture of TAMP is shown in Figure 2-2. 
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Figure 2-2 The hierarchical architecture for task and motion planning (TAMP) 

TAMP is often applied to “pick and place” problem for robotic arm manipulation. It 

is because that given tasks impose restrictions on the feasible solution space, leading to 

speed-up of the searching process [35]. In [36], the robot arm tries to search a better grasp 

position according to the shape of objects. Through this method, the robot can not only 

eliminate the searching space, but also predict the location of its end effector. In [37], the 

industrial robot arm operates under task points according to the genetic algorithm. In [38], 

the work utilize learning algorithm to predict solution constraints instead of solutions and 

thus speed up the searching time. These related works show that TAMP can enhance the 

efficiency in robotics in comparison with those subject to traditional motion searching. 

 

2.2.2 TAMP for Mobile Robots 

As TAMP being widely used for arm manipulation [32]-[38], it can also be applied 

to solve navigation tasks for mobile robots to adapt to complex surroundings [39]. The 
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planning dimension of mobile robots, usually under two-dimensional environment, is less 

than that of robotic arm manipulation, which equals to the number of joints. However, the 

processing time for mobile robots to navigate from one position to another is usually 

longer than that of the arm. Therefore, TAMP can still show its advantage in improving 

the efficiency when performing low-dimensional planning while the mobile robot is under 

navigation. In [40], the authors propose a planning system that is able to demonstrate 

dynamic low-level path corrections and high-level re-planning functions using the 

hierarchical properties of the TAMP. In [41], the work introduces reinforcement learning 

(RL) and designs a system with inner and outer loop architectures to speed up the 

convergence time. The system is evaluated in the simulated scenario with discrete 

motions: approach, open door, and go through. The results show that the TAMP system 

can be refined faster with the help of RL. Nevertheless, these works simply conduct 

experiments either merely simulation results with rather simple motions, which is not 

sophisticated enough for real world applications like in the senior center. 

 

2.2.3 TAMP for Human Robot Interaction (HRI) 

Due to the fact that this thesis is aimed at enabling a robot to provide assistance in a 

senior center. Thus, human robot interaction (HRI) becomes a must. Through TAMP, 

robots can make adequate and user-friendly decisions, building a connection between 

human and robots [42]. In [43], the task planner predicts the human motion and generates 

safe trajectories in a human-robot shared environment. The authors demonstrate their 

system under a human robot collaborative scenario and show the anticipatory behavior 

towards the robot system. In [44], the authors proposed an autonomous assistive robot 

that is able to serve multiple users by incorporating a finite state machine of different 

tasks.  On top of that, the same research team proposed [45], with the task planning being 
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solved through Mixed-Integer Programming (MIP) and Constraint Programming (CP) for 

optimizing the task planning subject to different temporal constraints. The experiments 

of both [44] and [45] were designed for mobile humanoid robot to remind and to host 

bingo games for a group of people under the commands from the caregiver. 

 

2.2.4 Summary of TAMP 

What have been described previously shows the significant positive influence about 

how the TAMP can improve the robot operations including robotic arm manipulation, 

mobile robot navigation, and human robot interaction. Not only can the robot generate 

suitable, collision-free trajectories, but it also can understand the semantic meaning of 

requests and complete them through discrete motions in a systematic way. By applying 

TAMP in robotic applications, robots are then capable of making more intelligent decision 

to handle various HRI problems in the complex human-involved environment. 
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Chapter 3 Visual and Verbal Perceptions 

In this chapter, we are going to discuss how robot perceives the environment. Basically, 

the two main sensors are the microphone and cameras embedded on the robot. There may 

exist other embedded sensors such as Sonar, Infrared (IR), Laser Range Finder (LRF), 

and even Light Detection and Ranging (LiDAR). Although these sensors may have high 

precision and are useful for mapping and localization process, they simply focus on 

extracting geometry features, which is insufficient for the social companion robot to deal 

with perception task while interacting with human. Therefore, we mainly discuss on the 

usages of cameras and microphones in the following sections. 

A social companion robot may need a microphone to receive verbal requests from 

human beings. In order to deal with verbal perception, the robot needs to first convert 

human speech into words, known as Speech to Text (STT). After that, not only do the 

robot receive the commands from people, but also estimate the human emotions from the 

words. These words can be formulated into instructions for our decision system, which 

will be discussed in the sequel of this chapter. Moreover, the robot can generate suitable 

responses while having a chat with human employing the verbal perception techniques.  

Other than verbal perceptions, visual perception is also crucial for a social robot to 

make adequate response in a household environment. Compared with other commonly-

seen embedded sensors, cameras contain useful information for robot to infer the 

surrounding other than geometry structure with relatively low cost. For example, the 

RGBD cameras have higher Cost-Performance Ratio than LiDAR when speaking of 

three-dimensional spatial detections. Through implementing Computer Vision techniques, 

the robot is able to detect human beings, recognize the indoor scene, and detect human 

actions as well as activities. This information collected by visual perception can be 
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utilized for us to design sophisticated methods to make the social robot to generate 

suitable decisions while interacting with human-beings. 

 

3.1 Preliminary 

In this section, we first introduce the two open source packages on which this thesis 

is based. More specifically, in order to obtain accurate and robust results on object 

detection and human skeleton detection in real time, two open source packages, 

YOLO[20][21][22] and OpenPose [46][47][48][49], are chosen. These deep learning-

based methods provide high performance for our system such that more high-level 

recognition can be designed. In the following sections, we briefly introduce these two 

packages respectively 

. 

3.1.1 You Only Look Once (YOLO) 

YOLO is an open source package for real-time object detection system. Not only 

does it exist gradually improved versions but also can be viewed as the state-of-the-art 

deep learning architecture for computer vision detection. YOLO system utilizes a single 

Convolutional Neural Network (CNN) model so as to perform end-to-end architecture, 

as shown in Figure 3-1(a). In other words, it only requires a series of images as input and 

bounding boxes as ground truth to train the overall model, which can be viewed as a 

regression problem. It also provides an idea that divides the resized images into S × S 

grids and then predicts the distribution over labels of classes, the center, and the width 

and height of objects in each grid, shown in Figure 3-1(b) and (c). On top of that, given a 

pre-trained YOLO model, one can directly apply it for framewise real-time object 

detection through providing raw images constantly. The input images will be resized to 
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rectangles with length being 448, and pass through the CNN. After that, the output result 

will be the bounding boxes of each detected objects as well as their class probabilities, 

also known as the confidence of existence. In the paper, they define the confidence as 

shown in Eq. (3-1): 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ 

(3-1) 

 
(a) The network architecture of YOLO 

 
(b) The image processing flow of YOLO 

 
(c) Separating images into grids and transferring into regression problem  

Figure 3-1 YOLO system for real-time visual object detection [20] 
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Besides, during the testing procedure, the class-specific confidence scores for every 

bounding box can be calculated through Eq. (3-2): 

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) × 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ (3-2) 

The main contribution of this network is that not only does it generate results in a 

short period of time but also is more accurate than other real-time systems comparing the 

mean average precision (mAP). In brief, [20][21][22] summarize the strength and 

robustness of YOLO network as follows: 

 For real-time detection, the base model is able to process images at 45 frames per 

second (fps), and 155 fps if one uses a faster version called Fast YOLO with 

satisfactory mAP outcomes [20]. As for improved version, YOLOv3, a single image 

can be processed within 22 milliseconds at 28.2 mAP [22]. 

 The false positive prediction on the background of is lower than those of the other 

state-of-the-art networks such as Fast R-CNN [19]. 

 The generalizable representations of object images can be learned by the network. 

In our system, we apply YOLOv3 as our fundamental object/human detection system. 

Based on this deep-learning method, the robot is able to capture human beings as well as 

objects surround them. 

 

3.1.2 OpenPose: Human Anatomic Skeleton Detection 

The OpenPose is another open source package developed by Carnegie Mellon 

University [46] with the aim to detect multiple human poses with RGB images as inputs 

in real time. While training and evaluating on the COCO 2016 key-points challenge as 

well as MPII datasets, this multi-threading system written in C++ language with Open 

Source Computer Vision (OpenCV) and Caffe [50] is able to perform real-time multiple 
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human skeleton detection, which can be further applied for locating people as well as 

interpreting their body languages. The architecture is able to learn not only the location 

of body parts, represented as Part Confidence Maps, but also their association among one 

another through the non-parametric representation, known as Part Affinity Fields (PAFs), 

in order to increase the detection accuracy. As shown in Figure 3-2, the system takes the 

raw RGB image as inputs and jointly predicts the confidence location of body parts and 

the PAFs. Then, the system performs bipartite matching so that the body joints of a person 

can be linked, while that of different people can be separated. The detailed network 

architecture is shown in Figure 3-3. 

 

 
Figure 3-2 Image processing flow of OpenPose 

 

Figure 3-3 Detail network architecture of OpenPose. 
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 With the assistance of OpenPose, the gap between human verbal messages and 

body gesture can be filled. On the other hand, robots are able to have better visual 

perception ability to sense human beings. Furthermore, more heuristic algorithms can be 

designed based on the skeleton detection results from OpenPose so that the robots have 

the capability to identify human and recognize his or her actions. Robots may also sense 

emergency condition actively without people request for help. On the other hand, 

OpenPose also provides alternative version hand-specific pose detections that catch 

positions and movements of fingers, indicating that hand gestures can be one of the 

communication tools among human-robot interaction (HRI). The human anatomic 

skeleton joints are labeled in Figure 3-4, and some example results from the OpenPose  

are shown in Figure 3-5. 

 

Figure 3-4 Labels of joints for OpenPose 

   

(a) Multiple people pose 

detection in RGB image 

(b) Face detection and 

upper limbs detections 

(c) A example of upper 

limbs and hands detection 

Figure 3-5 OpenPose examples [51] 

Right limb Left limb 
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3.1.3 Speech to Text and Emotion Recognition 

As for the speech to text (STT) package, we utilize the application called the ROS 

Voice Message embedded on the Android operation system developed by the Jouhou 

System Kougaku Laboratory [52]. The reason we perform STT on the smart phones is 

that the system is targeted at the household environment, and smart phones become 

adequate tools for family members to communicate to robot. People can send requests in 

their individual rooms to ask the social robot for help. Figure 3-6 shows the graphic user 

interface of this package, where the mobile phone first connects to our desktop server and 

then infers the STT results once receiving human voice. 

 Another crucial information for our verbal perception system is the emotion hidden 

in human words, known as sentence sentiment classification. Although there are related 

works that take advantages from deep leaning techniques to recognize sentiment from 

sentences, they usually require heavy computational resource, lowering the performance 

  

(a) Connection to the server (b) STT results 

Figure 3-6 The GUI of ROS Voice Message 
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of the overall system. Therefore, we choose Valence Aware Dictionary and sEntiment 

Reasoner (VADER), a package that analyzes sentiments through heuristic algorithms [53]. 

This package is a simple rule-based model with high efficiency and performance in 

comparison to the state-of-the-art semantic analysis including machine-learning methods. 

With the usage of the open-source packages, the verbal perception system can be designed 

in an efficient way as discussed in Section 3.3. 

 

3.2 Methodology for Visual Perception 

In this section, the detailed methodology of visual perception techniques is 

introduced. We mainly concentrate on the following problems: where is the human, who 

is the human, and what is the human doing. These problem are equivalent to Human 

Localization, Human Identification, and Action Detection respectively. The purpose of 

our system is to design efficient and robust algorithms on the basis of aforementioned 

deep-learning packages to give solutions toward the above issues. There may exist other 

deep-learning methods to deal with the same issues with larger scale such as more human 

instances in the human identification task or more action categories in action recognition. 

Nevertheless, these methods often provide off-line detection given a pre-recorded video 

while consuming a lot of computational resource. In contrast, for indoor scenario like 

family household or elder house, human identification can be condensed into family 

members or relatives that often exists in the home environment, and action categories can 

be eliminated into indoor activities. Thus, the advantage of our algorithms is that the 

system can generate satisfactory outcomes shortly after the low-level detection results 

without consuming large computational resources like GPU. On top of that, we design a 

human database which can store the perceived information as human status so that the 
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robot can recall at any time. With the assistance of our methodology, the robot is capable 

of reacting under social circumstances quickly. The sub-system flow chart of our visual 

perception module is shown in Figure 3-7. 

 

3.2.1 Image Stitching 

For our social robot, the field of a single camera is too small to detect the whole body 

of human beings. Without the overall body pose, it is difficult for robot to generate 

suitable social response. Fortunately, there are two identical cameras embedded in our 

robot system in vertical direction. As a result, we concatenate two images and run the 

deep-learning models. Through the image stitching technique, not only can more objects 

be detected, but also the whole human anatomic body skeleton can be recognized. Figure 

3-8 shows some detection results between single camera images and stitched images. 

Although there may exist gap after stitching, the detection of YOLO and OpenPose can 

still come up with true positive result, especially the human skeleton. An example is 

shown in Figure 3-14 

 

Figure 3-7 Block diagram of visual perception 
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(a) Single RGB image from top camera (b) Stitched image 

Figure 3-8 An example of image stitching 

 

3.2.2 Human Localization 

In our system, the robot would like to know where people are in the indoor 

environment in order to serve them. Practically speaking, the location under semantic 

map is much more crucial for us than the geometry location. For example, “Alex is in the 

living room” is more meaningful for the robot to approach and complete tasks in 

comparison to “Alex is in position (x, y).” Therefore, we approximate the location of 

people using the RGBD camera. Note that other methods may utilize RGB camera as well 

as laser range finder and localize human through sensor fusion. Nevertheless, the laser 

range of Pepper is simply 1.5 meters, which is relatively shorter in comparison to depth 

camera. In the following Section 5.2.1, we show that our system can localize human 

within 2.7 meters through RGBD camera. 
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With advantage of RGBD camera and human/object detection system as YOLO 

mentioned above, the robot is able to infer the location of objects as well as people. 

Introduced from literatures related to computer vision [54], the two-dimensional pixel 

coordinates in RGBD images can be mapped into three-dimensional coordinate through 

the so-called Pinhole Model. The equations of the Pinhole Model are shown from Eq. 

(3-3) to Eq. (3-5): 

𝑥𝑟 =
(𝑝𝑥 − 𝑐𝑥)

𝑓𝑥
× 𝑑 (3-3) 

𝑦𝑟 =
(𝑝𝑦 − 𝑐𝑦)

𝑓𝑦
× 𝑑 (3-4) 

𝑧𝑟 = 𝑑 (3-5) 

 

where the (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) are the position in the three-dimensional coordinate relative to the 

robot view frame (𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟), (𝑝𝑥, 𝑝𝑦) is the pixel position relative to the RGBD image 

coordinate (𝑢, 𝑣), (𝑐𝑥, 𝑐𝑦) denotes the center of the camera, (𝑓𝑥, 𝑓𝑦) is the focal length 

in the x, y direction. d is the value on the (𝑝𝑥, 𝑝𝑦) in the depth image. Figure 3-9 shows 

an example of parameters in an image. 

 

Figure 3-9 The parameters for coordinate transformation 
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 Given the bounding boxes of targets from RGBD camera, the robot can obtain their 

depth values through depth images. In our approach, we choose the box center and a 

rectangular boundary that is adaptive to the size of a bounding box from the depth image 

and calculate the average depth value, as show in the Figure 3-10(b). Note that one can 

also implement human/object segmentation from the depth image. Nevertheless, we 

approximate the average depth of objects and people using the value around the center of 

the depth image so as to lower the computation consumption. After that, the system can 

project the three-dimensional position into two-dimensional semantic map and perform 

 

(a) RGB image of the robot top camera with YOLO detection 

 

(b) Depth image of robot camera with human bounding box 

Figure 3-10 The RGBD view of robot top camera 
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the coordinate transformation so as to map the approximate location from the robot frame 

to the global map frame and extract the semantic location. Figure 3-11 illustrates the 

relative and global position of our proposed localization result. 

 

3.2.3 Human Identification 

While approaching toward human, the robot needs to further understand “who” it is 

interacting with. This refers to the human identification problem. Though there are works 

related to human identification using facial features, they may require human to face 

 

(a) Position relative to robot base 

 

(b) Position in the global map 

Figure 3-11 The localization results. Yellow box is the human location on the global 

map, while the red arrow is the robot current location. 
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toward the robot directly. What’s more, robot may need to reach very close to human in 

order to achieve high enough resolution. This is somehow difficult for household 

applications as human may feel uncomfortable from robot interruptions. As a 

consequence, our system tends to identify human-beings through their dressing.  

The whole process can be separated into two phases: Initialization and Recall. 

During the Initialization phase, the robot will approach an unknown person and greet to 

him or her, asking the name, gender, and age. The current receiving image of that person 

is known as the query image. With the advantage of OpenPose, the system can capture 

the RGB value on the pixel of the body joint. The system then extracts and stores the 

RGB values on chest, left shoulder, and right shoulder, which are joint 1, joint 2, and 

joint5 in the Figure 3-4 respectively. The Recall phase will be triggered when robot is 

identifying the person before executing an instruction. Given the person inside the current 

camera frame, also known as the testing image, the robot first extracts the RGB value of 

joints 1, 2, and 5 on the basis of OpenPose. Then it will compare the color similarity using 

a low-cost approximation of color metrics inspired from [55]. This algorithm takes the 

concept of weighted Euclidean distance, with the weight factors representing how intense 

the “Red” component in the color is. Given two colors, 𝑪𝟏 and𝑪𝟐, with RGB values 

(𝑪𝟏,𝑹, 𝑪𝟏,𝑮, 𝑪𝟏,𝑩 ) and (𝑪𝟐,𝑹, 𝑪𝟐,𝑮, 𝑪𝟐,𝑩) respectively, the equations of calculating the 

approximated distance metrics, ∆𝑪, are shown from  Eq. (3-6) to Eq. (3-10): 

𝒓̅ =
𝑪𝟏,𝑹 + 𝑪𝟐,𝑹

𝟐
 (3-6) 

∆𝑹 = 𝑪𝟏,𝑹 − 𝑪𝟐,𝑹 (3-7) 

∆𝑮 = 𝑪𝟏,𝑮 − 𝑪𝟐,𝑮 (3-8) 

∆𝑩 = 𝑪𝟏,𝑩 − 𝑪𝟐,𝑩 (3-9) 
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∆𝑪 = √(𝟐 +
𝒓̅

𝟐𝟓𝟔
) × ∆𝑹𝟐 + 𝟒 × ∆𝑮𝟐 + (𝟐 +

𝟐𝟓𝟓 − 𝒓̅

𝟐𝟓𝟔
) × ∆𝑩𝟐 (3-10) 

According to the approximation, the smaller ∆𝐶 is, the more similar 𝐶1 and 𝐶2 are. 

Therefore, the robot can identify human anytime by comparing the current observation 

with the database built from the initial phase. Note that common identification methods 

usually rely on human faces. Nonetheless, such methods are not reliable for cameras with 

low resolution. What’s more, these methods often require human to face toward the robot, 

which may interrupt people who are reading, chatting, or even sleeping. Thus, although 

our system needs to update once the human changes his/her clothes, we can still obtain 

satisfactory results on low resolution cameras without interfering human beings. 

Algorithm 3-1 shows the detailed of our identification method works: 

Algorithm 3-1 Human Identification 

1. Define: Joint positions of a person according to Figure 3-4:  

2.        𝐽 = {(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥17,𝑦17)} 

3.        Color threshold 𝐶𝑡ℎ 

4. Input: Current stitched image 𝐼 = (𝑅𝐼 , 𝐺𝐼 , 𝐵𝐼) 

5.       Joint position of N people in current frame 𝑱𝒄 = {𝐽𝑐,1, 𝐽𝑐,2, 𝐽𝑐,3, … , 𝐽𝑐,𝑁} 

6.       Joint RGB color of M people in database Human: 

7.           𝑹𝒅 = {𝑅𝑑,1[𝐽], 𝑅𝑑,2[𝐽], … , 𝑅𝑑,𝑀[𝐽]} 

8.           𝑮𝒅 = {𝐺𝑑,1[𝐽], 𝐺𝑑,2[𝐽], … , 𝐺𝑑,𝑀[𝐽]} 

9.           𝑩𝒅 = {𝐵𝑑,1[𝐽], 𝐵𝑑,2[𝐽], … , 𝐵𝑑,𝑀[𝐽]} 

10. for 𝑛 in 𝑟𝑎𝑛𝑔𝑒(𝑁): 

11.     for 𝑚 in 𝑟𝑎𝑛𝑔𝑒(𝑀): 

12.         𝑟̅ =
𝑅𝐼[𝐽𝑐,𝑛]+𝑅𝑑,𝑚[𝐽]

2
 

13.         ∆𝑅 = 𝑅𝐼[𝐽𝑐,𝑛] − 𝑅𝑑,𝑚[𝐽] 

14.         ∆𝐺 = 𝐺𝐼[𝐽𝑐,𝑛] − 𝐺𝑑,𝑚[𝐽] 

15.         ∆𝐵 = 𝐵𝐼[𝐽𝑐,𝑛] − 𝐵𝑑,𝑚[𝐽] 

16.         ∆𝐶 = √(2 +
𝑟̅

256
) × ∆𝑅2 + 4 × ∆𝐺2 + (2 +

255−𝑟̅

256
) × ∆𝐵2 

17.         if ∆𝑪̅̅ ̅̅ < 𝐶𝑡ℎ: 

18.             return Human(m) 
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3.2.4 Framewise Hierarchical Human Activity Recognition 

After understanding “where” and “who” the human is, the next step for the system 

is to detect what he or she is doing. Due to the fact that the system aims to serve in the 

indoor environment, the number of activity categories are much fewer than that of open 

source dataset which may require deep learning techniques to make accurate inference. 

Therefore, in this thesis work, the system utilizes heuristic algorithms to achieve real-

time human activity detection. Basically, indoor activities can be separate into two 

hierarchical types. One is the general activities which can be recognized from anatomic 

skeleton, such as sitting, standing, and lying. The other type contains more detailed 

activities that may require other properties from the visual perception like reading, 

working, and watching TV. 

In order to obtain the detailed activities, the system combines the results from both 

object detection and human pose detection. The indoor activities can be inferred from 

mainly three sources: hands, eyes, and objects. In other words, the system takes the 

interactions between these sources and calculate activity scores. Given the detected 

objects with individual confidences and the skeleton detection results provided by 

previous perception methods performing on the stitched image of robot camera, the 

system is capable of fetching the position of hands as well as neighboring objects. In this 

way, the system is able to recognize what objects the person is holding or may use in the 

future. Besides, the robot can also find out whether the human is facing toward itself or 

not through the head orientation and the eye direction. If not, the system forms two vectors, 

both starts at the ear (v1 in Figure 3-12 (b)) and ends at the object center and nose (v2 in 

Figure 3-12 (b)) respectively. Then, the robot checks whether the object are under human 

eye sight by calculating the angle in between. Figure 3-12 are some of the examples,  
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where v1 and v2 are vectors and θ is the angle in (b). Therefore, the system can now know 

what the person is looking at, which may be highly related to what he or she is doing. 

After knowing the set of objects the person is holding and watching. The system can 

infer the related activities by a pre-defined affordance list. For example, after recognizing 

 

(a) The case when human is facing the robot, robot can detect whether human is 

facing it by checking the head direction. 

 

(b) The case when human is reading, showing the concept of forming vectors for 

checking objects in the eye sight. 

Figure 3-12 Human perception for detailed activity detection 
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a bowl near a person’s hands, the system may infer that the person is probably eating, as 

a bowl is an eating tool according to the affordance list. 

In addition to recognizing object affordances for activity inference, we also consider 

whether the human is watching his/her hands. It is because that some indoor activities 

may have higher probability given this condition. For example, people tend to look at 

hands holding a fork while eating, and look at hands buckling buttons while dressing. 

The overall relations are shown in Figure 3-13, where Oh, Oe are the sets of objects near 

hands and eye sight respectively, and Eh,e is the event whether the target person is looking 

at his/her hands.  

From the above relation, the robot can infer the human activity through calculating 

scores based on the conditional probability as shown by Eq. (3-11), (3-12) and (3-13): 

𝑺𝒄𝒐𝒓𝒆(𝒂) = 𝒘𝒉𝑷𝒉(𝒂|𝑶𝒉)𝑷(𝑶𝒉) + 𝒘𝒆𝑷𝒆(𝒂|𝑶𝒆)𝑷(𝑶𝒆) + 𝒘𝑬𝑷𝑬(𝒂|𝑬𝒉,𝒆)𝑷(𝑬𝒉,𝒆) (3-11) 

𝑷𝒉(𝒂|𝑶𝒉)𝑷(𝑶𝒉) = ∑ 𝑷𝒉(𝒂|𝒐)𝑷(𝒐)

𝒐∈𝑶𝒉

 (3-12) 

𝑷𝒆(𝒂|𝑶𝒆)𝑷(𝑶𝒆) = ∑ 𝑷𝒆(𝒂|𝒐)𝑷(𝒐)

𝒐∈𝑶𝒆

 (3-13) 

 

Figure 3-13 Overall relation for detailed indoor action recognition 
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where a represents the particular activity among total 11 categories, namely, eat, drink, 

watch TV, chat, call, read, work, store, sleep, go out, wash, and others, 𝑆𝑐𝑜𝑟𝑒(𝑎) is the 

score of all indoor action categories. 𝑃ℎ(𝑎|𝑶𝒉)𝑃(𝑶𝒉)  and 𝑃𝑒(𝑎|𝑶𝒆)𝑃(𝑶𝒆)  are the 

action probabilities from given object sets of hands and eye sight, with 𝑃(𝑜) being the 

confidence results from the object detection system. As for every included objects, the 

term 𝑃ℎ(𝑎|𝑜) and 𝑃𝑒(𝑎|𝑜) mean that how the object 𝑜 that nears the hands and under 

view sight respectively can affect the probability of certain action 𝑎 by providing its 

affordances. The hyper-parameters 𝑤ℎ, 𝑤𝑒, 𝑤𝐸 are weightings that serve as balancing 

the overall probability and normalizing the final action probability. Algorithm 3-2 shows 

how objects are included into sets of 𝑶𝒉 and 𝑶𝒆. 

With the use of detecting sets of objects that may be potentially utilized by the person 

on the foundation of object detection system and human pose detection system, our 

proposed action recognition algorithm can capture more sophisticated indoor actions like 

eating, working, reading, dressing, to name a few. In addition, this system is designed 

under a hierarchical structure. That is, if the probabilities of those detailed actions are too 

low, the output of the action will become the pose action, namely sitting, standing, and 

lying. Moreover, since the input of the proposed method is simply an image frame and 

does not require GPU more heavy computation, the action detection can perform 

framewise action detection in real time. Algorithm 3-3 is related to the detailed process 

of how robot recognize human actions. While there may exist cases that human is peaking 

at the robot, leading to false positive of 𝑶𝒆, these actions are mostly temporary and may 

be updated as the system is running. 
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Algorithm 3-3 Action recognition 

1. Input: Human-object relations: 𝑶𝒉, 𝑶𝒆, 𝐸ℎ,𝑒 

2.       Probability of each detected objects 𝑃(𝑜) 

3. Define: Probability threshold 𝑃𝑡ℎ, Weighting factors 𝑤ℎ, 𝑤𝑒 , 𝑤𝐸 

4. Output: 𝑃(𝑎) 

5. for o in 𝑶𝒉: 

6.     𝑃ℎ(𝑎|𝑶𝒉)𝑃(𝑶𝒉)+= 𝑃ℎ(𝑎|𝑜)𝑃(𝑜) 

7. for o in 𝑶𝒆: 

8.     𝑃𝑒(𝑎|𝑶𝒆)𝑃(𝑶𝒆)+= 𝑃𝑒(𝑎|𝑜)𝑃(𝑜) 

9. return 𝑃(𝑎) according to Eq. (3-11) 

 

Algorithm 3-2 Get objects around hands and eyesight 

1. Define: Range factor αℎ𝑎𝑛𝑑, Eyesight angle range 𝛿𝑒𝑦𝑒 

2. Input: Current stitched image 𝐼 = (𝑅𝐼 , 𝐺𝐼 , 𝐵𝐼) 

3.       Joint position of a person 𝐽 = {(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥17,𝑦17)} 

4.       Objects from detection 𝒐 = {𝑜1, 𝑜2, … , 𝑜𝑀} 

5.       Centers of bounding boxes of M objects 𝒄 = {𝑐1, 𝑐2, … , 𝑐𝑀} 

6. Initial: 𝑶𝒉 = 𝑶𝒆 = ∅, 𝐸ℎ,𝑒 ← 𝑭𝒂𝒍𝒔𝒆 

7. 𝜃ℎ,𝑒 = 𝒎𝒊𝒏
(𝑥0,𝑦0)∈{(𝑥16,𝑦16),(𝑥17,𝑦17)}

(𝑥ℎ,𝑦ℎ)∈{(𝑥4,𝑦4),(𝑥7,𝑦7)}

(𝑥𝑒,𝑦𝑒)∈{(𝑥14,𝑦14),(𝑥15,𝑦15)}

cos−1 (𝑥𝑒−𝑥0,𝑦𝑒−𝑦0)∙(𝑥ℎ−𝑥0,𝑦ℎ−𝑦0)

‖(𝑥𝑒−𝑥0,𝑦𝑒−𝑦0)‖2‖(𝑥ℎ−𝑥0,𝑦ℎ−𝑦0)‖2
: 

8. if |𝜃ℎ,𝑒| < 𝛿𝑒𝑦𝑒: 

9.     𝐸ℎ,𝑒 ← 𝑻𝒓𝒖𝒆 

10. for 𝑐𝑖 in 𝒄: 

11.     𝑑ℎ𝑎𝑛𝑑 = 𝒎𝒊𝒏
(𝑥,𝑦)∈{(𝑥4,𝑦4),(𝑥7,𝑦7)}

‖(𝑥 − 𝑐𝑥 , 𝑦 − 𝑐𝑦)‖
2
 

12.     𝜃𝑒𝑦𝑒 = 𝒎𝒊𝒏
(𝑥0,𝑦0)∈{(𝑥16,𝑦16),(𝑥17,𝑦17)}

(𝑥𝑒,𝑦𝑒)∈{(𝑥14,𝑦14),(𝑥15,𝑦15)}

cos−1 (𝑥𝑒−𝑥0,𝑦𝑒−𝑦0)∙(𝑐𝑥−𝑥0,𝑐𝑦−𝑦0)

‖(𝑥−𝑥0,𝑦−𝑦0)‖2‖(𝑐𝑥−𝑥0,𝑐𝑦−𝑦0)‖
2

 

13.     if 𝑑ℎ𝑎𝑛𝑑 < αℎ𝑎𝑛𝑑 ∙ 𝒎𝒂𝒙(‖(𝑥3 − 𝑥4, 𝑦3 − 𝑦4)‖𝟐, ‖(𝑥6 − 𝑥7, 𝑦6 − 𝑦7)‖𝟐): 

14.         𝑶𝒉 ← 𝑜𝑖 

15.     if |𝜃𝑒𝑦𝑒| < 𝛿𝑒𝑦𝑒: 

16.         𝑶𝒆 ← 𝑜𝑖 

17. return 𝑶𝒉, 𝑶𝒆, 𝐸ℎ,𝑒 
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 Take Figure 3-14 for instance, the robot observes a person holding a mouse, looking 

at a monitor, and not looking at hands. As according to the well-known affordance 

network, AfNet [56], the mouse contains affordances such as socio-cultural preference 

conditioning and wrap-ability that can be inferred as electronics, whereas the monitor 

contains affordances as display-ability. Therefore, given thirteen action categories, 

𝑃ℎ(𝑤𝑜𝑟𝑘|𝑚𝑜𝑢𝑠𝑒) = 1 , and 𝑃𝑒(𝑤𝑜𝑟𝑘|𝑚𝑜𝑛𝑖𝑡𝑜𝑟) = 𝑃𝑒(𝑤𝑎𝑡𝑐ℎ 𝑇𝑉|𝑚𝑜𝑛𝑖𝑡𝑜𝑟) =
1

2
 . 

Other action probabilities remain 0 as these objects does not provides affordances that 

indicates them. If the weighting remains the same, 𝑤ℎ = 𝑤𝑒, then: 

𝑃(𝑤𝑜𝑟𝑘) =
1 + 0.5

1 + 0.5 + 0.5
= 0.75 (3-14) 

𝑃(𝑤𝑎𝑡𝑐ℎ 𝑇𝑉) =
0.5

1 + 0.5 + 0.5
= 0.25 (3-15) 

As a consequence, the robot can infer the person is working as it has the highest 

probability among all other actions.  

  

(a) YOLO object detection (b) OpenPose skeleton detection 

Figure 3-14 An illustrative example in the view of the robot 
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3.3 Methodology for Verbal Perception 

The proposed verbal perception system is relative straightforward. Leveraging from 

the open-source packages, the system receives human speech and IP address from the 

smart phone and transforms speech into texts and analyze his/her emotion through ROS 

Voice Message on phone as Speech To Text and VADER as Sentiment Analysis on desktop 

respectively. The IP address helps the robot to fetch human names and status from the 

human database. As for the sentiment analysis, according to [57], the threshold of positive, 

neutral, and negative emotions is ±0.05. Namely, if the compound score is in the range 

between 0.05 and −0.05, then the human emotion can be detected as neutral; otherwise 

the words may contain positive and negative feelings depending on whether the score is 

larger than 0.05 or lower than −0.05. Finally, the human requests are obtained through 

predefined key word extraction from the Extract Requested Robot Functions. Those key 

words can be mapped to specific task sequences, which is constructed from pre-defined 

robot functions. For example, the physical terms in the verbal information will be detected 

due to a dictionary in the function constructor containing headache, fever, sore throat, to 

name a few. The overall flow chart is shown in Figure 3-15, in which we present an 

example of a person Alex sending request as “Chat with me, I feel bad.” Consequently, 

the robot may understand the request as “Alex feels bad and may need to chat.” 

 

Figure 3-15 The flow chart for verbal perception 
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3.4 Human ID Database Organization 

After applying the above methods from the visual perception, the robot can now 

detect “where the person is,” “who is the person,” and “what is the person doing.” 

Besides, during the Initialization phase of human identification, the name, IP address, 

gender, age, shirt color, and schedules of the person can be obtained while the robot greets 

to him/her. While the robot is processing tasks inside the environment, visual perception 

results such as human location, current activity can be memorized. To organize the 

information, our system forms a Human data structure as shown in Table 3-1. With a 

person mapping to one unique table, the database can be loaded as a dictionary structure 

and store efficiently in the computer. Therefore, the system can build a large memory 

database based on individual human beings. Through this organization, the robot can store 

the visual and verbal perception results in an efficient way. 

Table 3-1 Human data structure 

string name Name of the person 

string IP address Mobile phone IP address of the person 

bool gender The gender of the person 

int8 age The age of the person 

int8[] shirt color The shirt color of the person 

int8 location The semantic location of the person 

int8 activity The current activity the person is doing 

string[] schedules The predefined schedules of the person 
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Chapter 4 Dynamic Multi-Task Social Navigation 

 

Figure 4-1 Overall TAMP system for dynamic multi-task social navigation 

In this chapter, we will explain how the robot completes tasks dynamically while 

navigating in the indoor environment. The definition of “dynamic” in this thesis is that 

the robot will react as soon as additional tasks are launched and might therefore change 

the destination. We utilize the concept of task and motion planning (TAMP) as the 

framework of our decision making system. The TAMP separates decision making into 

two parts: task planning and motion planning. Since the motion planning algorithm is 

mostly related to the preliminary that applying open-source packages to generate a 

collision-free path, we put our focus on the problem formulation and the algorithm of our 

task planning sub-system. Figure 4-1 shows the whole structure of our proposed system. 

The following sections first reveals the preliminary of this system, including the usage 
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of laser SLAM as well as the navigation packages, and the complexity analysis of decision 

problems in the field of algorithm. Secondly, we formulate the perception results into 

instructions and model the household scenario into discrete graph. Next, we propose our 

task planning algorithm on the basis of the graph and given instructions. Besides, we also 

explain the accuracy of the algorithm, meaning that the robot will eventually reaches the 

instruction destinations instead of getting stuck at the edge. Last but not least, the 

integration of task and motion planning is introduced, through which we mimic the 

computer architecture and design the overall TAMP system as well as the data flow. 

 

4.1 Preliminary 

In this section, we will discuss the preliminary of the proposed navigation system. 

First of all, the system takes large advantages from the open-source Robot Operating 

System (ROS) [58], which contains laser-based SLAM, robust localization, and save 

navigation packages. On the other hand, the complexity of our proposed algorithm will 

be discussed in the following sections, we will give a brief introduction to the complexity 

of algorithm as well as the renowned value iteration method. 

 

4.1.1 Laser-based SLAM: GMapping, AMCL, and Navigation Stack 

Since the purpose of this thesis is to design a navigation system for mobile social 

robot to interact with multiple people, the Simultaneous Localization and Mapping 

(SLAM) techniques become an important background. In this section, we will discuss the 

laser-based SLAM which is implemented as the basis for the motion planner of the 

proposed system, known as GMapping [15][16]. On top of that, given the map built from 

GMapping, the laser-based localization method, Adaptive Monte Carlo Localization 
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(AMCL) [59][60][61], can provide the robot position toward the proposed TAMP system 

to define the robot state. 

The GMapping SLAM utilizes the particle filter theory that each particle represents 

a single map of the environment. Then the critical problem becomes how to decrease the 

number of particles and generate the final mapping. Based on [15] and [16], the Rao-

Blackwellized particle filter utilizes the adaptive techniques to eliminate the particles. 

Besides, the techniques of taking the robot movements and current observations into 

account is adopted, and parallel computing speeds up the overall calculation. 

After building the map from GMapping package, the robot can answer where it is 

by applying the AMCL package [62]. The AMCL is originates from the Monte Carlo 

Localization (MCL), which regards the robot location as particles and try to eliminate 

them such that the particles will eventually converge to the accurate position. Upgrading 

from the MCL, the AMCL utilizes the Kullback-Leibler divergence, defined in Eq. (4-1) 

with 𝑃 and 𝑄 being two probability distributions, to update those particles. In general, 

the concept of this localization method is to spread particles according to Gaussian 

distribution centering at the initial position on the built map, with each particle represents 

a possible location of the robot. After receiving a motion command, the algorithm 

performs the movement on each particle, calculates the expecting observation, compares 

with the real world laser measurement, and assigns the corresponding probability of every 

particle according to the similarity from sensor matching. As the process goes on, the 

particles will be eliminated while the robot location converges to correct place. 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖) log
𝑃(𝑖)

𝑄(𝑖)
𝑖

 (4-1) 

After knowing the current location as well as the pre-constructed map, the navigation 

stack package generates a single global path given the target position using either A* 
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algorithm [27] or Dijkstra algorithm [63]. Furthermore, obstacles in the static map from 

GMapping package may inflate according to the shape of the robot while performing the 

global path planning for safe navigation, known as the costmap [64]. For instance, there 

may exist a shortest path that guides the robot passing a narrow alley. However, as the 

global path planning is generated on the costmap, the inflated obstacles make the 

algorithm take robot shape into consideration and thus come up with a less optimal but 

safer path for robot to avoid collision. While the robot is moving, the Dynamic Window 

Approach (DWA) [65] generates local path planning for robot to perform save navigation. 

Through DWA, the robot can avoid collision even observing unknown obstacles that does 

not exist on the map. Note that there are other local path planning algorithms such as 

time-elastic band, which is well-known in the field of planning paths for car-like robots 

and differential wheels [66][67][68][69][70]. 

 

4.1.2 Fundamentals of Complexity 

Before analyzing the complexity of our scenario, some definition and theorem of 

algorithm complexity is introduced in this section. According to the lecture [63], 

complexity analyses aim to classify decision problems with the answer being merely “true” 

or “false”. A common sense is that the decision problems are often denoted with capital 

letters. Note that all the optimization problem, which complexity analysis cannot be 

applied directly, can be transformed into decision problems by offering a bound on the 

value to be optimized. For instance, in [63], the optimization problem SHORTEST-PATH 

can be interpreted to decision problem, PATH, as: given a graph G, two vertices u, and v, 

and a number k, does there exist a path from u to v with total cost at most k? This relation 

provides a clue that if the decision problem is “easy” from the complexity analysis, the 

optimization is not so hard as well. 
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Typically, the complexity of decision problems can be classified into three types: P, 

NP, and NP-complete. By definition, if a decision problem is in P if and only if there is a 

polynomial-time algorithm 𝐴  such that given an instance 𝑠  is true if and only if 

𝐴(𝑠) = 1, and 𝐴(𝑠) = 0 otherwise. On the other hand, a decision problem is NP if and 

only if there is an algorithm 𝐵(𝑠, 𝑡) with running time 𝑂(|𝑠|𝑛) such that an instance 𝑠 

is true if and only if there exists a certificate 𝑡 and 𝐵(𝑠, 𝑡) = 1. In other words, if the 

answer of the instance is false, the algorithm of NP problems will absolutely output 0; 

however, it will generate 1 with a certain probability if the answer is true. 

Before introducing the definition of NP-complete, the definition of reducible is 

needed, where there exists a function 𝑓 between two decision problems X and Y such 

that all the instances in Y can be mapped to instances in X with the same answer. Based 

on this definition, a decision problem X is NP-complete if and only if the following two 

conditions are true: 

 X ∈ NP 

 ∀ Y ∈ NP, Y is polynomial-time reducible to X 

That is to say, if X has a solution, then so does Y, but if Y has a solution, then X is not 

guaranteed to have a solution. Nonetheless, this definition is still abstract. Therefore, to 

prove that a decision problem is NP-complete, Theorem 4-1 is often applied: 

Theorem 4-1 

If Problem X ∈ NP , there exists a Problem Y ∈  NP-complete and Problem Y is 

polynomial-time reducible to Problem X, then Problem X ∈ NP-complete. 

In the following sections, we will also show that our household scenario formulation is 

NP-complete by utilizing Theorem 4-1. 
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4.1.3 Introduction to Value Iteration 

Originated from the Markov Decision Process, the value iteration method 

[71][72][73] applies dynamic programming to solve the reinforcement learning. Its key 

concept is to estimate the expected reward on every state taking the probability of 

individual actions into account. For instance as Figure 4-2, in a grid maze with a single 

reward, traps, and obstacles, the robot tries to reach the reward by iteratively analyzing 

the expected reward on every gird.  

In this environment, the robot state can be represented as the grid location where the 

robot stands. For each grid, the robot will calculate the maximum expected reward by the 

multiplication of action probability as well as the expected reward on the next state. The 

sum of all possible actions and the reward forms the expected reward of the current state. 

The iteration will terminate once the expected values on grids are saturated. Later on, the 

robot will follow the path by choosing the grid with the maximum expected reward and 

reach the target eventually. Algorithm 4-1 is the pseudo code showing how value iteration 

works. In this algorithm, 𝜋(𝑠)  is the policy function that takes state 𝑠  as input and 

 

Figure 4-2 An illustrative example of robot in a grid maze. Gray circle indicated the 

robot position; black blocks are the obstacles; read blocks are the hell that contains 

negative rewards, and yellow block is the treasure that contains positive reward. 
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returns an action 𝑎. 𝑃(𝑠′|𝑠, 𝑎) indicates the probability of current state 𝑠 changing to 

next state 𝑠′  after applying action 𝑎 ; 𝑅(𝑠, 𝑎, 𝑠′)  is the reward function of giving 

sequential states as well as the action; 𝑄(𝑠, 𝑎) can be viewed as the expected reward of 

forcing to perform action 𝑎 on current state 𝑠, and 𝑉𝑘(𝑠) is the maximum expected 

reward on state 𝑠 at the 𝑘th iteration. The iteration process is shown in Figure 4-3. 

We take the concept of estimating the expected reward on every state while assuming 

the action probability being the same due to the robustness of our motion planner. 

  

(a) 𝑘 = 0 (b) 𝑘 = 1 

  

(c) 𝑘 = 10 (d) 𝑘 = 22 (saturation) 

Figure 4-3 Process of value iteration given positive reward 𝑟+ = 1, negative reward 

𝑟− = 1, discount factor γ = 0.9, and transition probability 𝑃 = 0.8. 
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Algorithm 4-1 Value iteration 

1. Inputs: 𝑺: a set of all possible robot states 

2.        𝑨: a set of all possible robot actions 

3.        𝑃: state transition function  

4.        𝑅: reward function 

5.        𝛾: discount factor 

6.        𝜃: threshold of convergence 

7. Initialize: 𝑘 ← 0 

8.          𝑉0(𝑠) to arbitrary values 

9. while true: 

10.     𝑘 ← 𝑘 + 1 

11.     for all 𝑠 ∈ 𝑺: 

12.         for all 𝑎 ∈ 𝑨: 

13.             𝑄(𝑠, 𝑎) ← 𝐸[𝑟|𝑠, 𝑎] + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎) ∙ [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝑘−1(𝑠′)]𝑠′∈𝑺  

14.         𝑉𝑘(𝑠) ← 𝑚𝑎𝑥
𝑎

𝑄(𝑠, 𝑎) 

15.     if |𝑉𝑘(𝑠) − 𝑉𝑘−1(𝑠)| < 𝜃,  ∀𝑠: 

16.         break while 

17. for all 𝑠 ∈ 𝑺: 

18.     𝜋(𝑠) ← 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝑨

∑ 𝑃(𝑠′|𝑠, 𝑎) ∙ [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝑘(𝑠′)]𝑠′  

19. return 𝜋(𝑠), 𝑉𝑘(𝑠) 

 

 

4.2 Methodology 

In this section, the methodology of our task planning is discussed. The whole process 

of the system can be divided as: transforming perceptions into instructions, discretizing 

the environment, performing task planning through value iteration, executing tasks with 

motion planning. We will thus discuss these parts accordingly. 

 

4.2.1 Transformation from Perceptions into Instructions 

Inspired from the R-type instruction of Microprocessor without Interlocked Pipeline 

Stages (MIPS) computer structure, our instruction format is designed as Table 4-1: 
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Table 4-1 Instruction structure 

int32 id The identification number of the instruction. 

int32 previous id The identification number of the previous instruction 

float64 𝛄 Initial reward value 

float64 𝛃 Decay factor 

bool type Whether the instruction is from the human or robot 

float64 start time The time once the instruction is launched 

int32 duration The time for executing the function 

string source The person who launches the instruction 

string target The person that the instruction will affect to 

int32 status Human actions or sentiment 

int32 function Robot actions 

int32 destination The place where the instruction will be executed 

Note that the previous id in the instruction format links the current instruction with the 

previous instruction if the task requires a series of instructions to complete. For example, 

if the care giver is too busy to check the status of elder Bob, he/she can assign the task 

“check Bob status” toward the robot. Thus, the robot will come up with two instructions, 

“Check Bob” and “Report to the care giver” and complete them one by one with the 

order according to the previous id. Besides, we assign an initial reward value and decay 

factor on every instruction to simulate the importance. Namely, as human may highly be 

unpleasant if there is no response after launching a task, we can design a monotonous 

decreasing function containing initial reward and decay factor such that the system is 

aimed to purchase the maximum reward. The decaying rule of the reward of instruction 

𝑖 is as Eq. (4-2), where  𝑡𝑖 is the duration from launching to completing the instruction. 

𝑟𝑖(𝑡) = 𝛾𝑖𝛽𝑖
𝑡𝑖 ,  𝛾𝑖  > 0,  1 > 𝛽𝑖 > 0,  𝑡𝑖 > 0 (4-2) 

For our visual perception, when the robot is unoccupied by human commands, it will 

wander around and observe household members. In this way, not only can the robot come 
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up with recommendation such as “play piano music for person who is reading”, but also 

set reminder once it observes human actions different from the pre-set schedule. As for 

our verbal perception, thanks to the open-source STT system [52], we can extract key 

words from sentences and map to certain functions. On top of that, the robot can also 

check human sentiments with the help from VADER. On the other hand, as for our visual 

perceptions, the human actions and locations can provide clues for the robot to generate 

instructions to itself. For instance, it may recommend a piano music if the human is 

reading, or remind his/her schedule if the current action is not identical to the preset 

schedule. Those key words and visual perception results can generate suitable initial 

rewards which imply the priority of the instructions. In our case, the priority of the 

instructions is: physical help, negative mood, neutral, positive mood, and self-generated 

commands from the robot. Moreover, we design the decay factor in every instruction for 

the robot to not only purchase merely rewards, but also take the distance and processing 

time into consideration. Through the instruction formations, we can transfer the 

household scenario into an optimization problem with regard to the initial rewards and 

decay factors. 

 

4.2.2 Problem Formulation for Task Planning 

Next, in order to speed up computation time while planning tasks, discretizing the 

real world environment is needed. Figure 4-4 shows the testing environment for our 

system and the result of discretization. Note that our system can be generalized into 

different indoor scenarios, and this is simply one of them. The system first predefines 

locations served as nodes such as office, bedroom, charging place, alley, living room, 

dining room, places to welcome guests and interact with the care giver according to given 

semantic mapping system. Note that the semantic mapping system can be achieved 
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through our previous work [74]. On top of that, it also generates edges in among through 

applying A* shortest path planning from one node to another, forming into a Euclidean 

graph. With the aid of instruction formation, and environment discretization, the robot is 

now able to deal with multiple human requests during task planning procedure.  

To discuss the complexity of the planning problem, let’s take a special case of our 

household scenario as shown in Figure 4-5: given a graph 𝐺 = (𝑉, 𝐸) with 𝑁 vertices 

{𝑣1, 𝑣2, … , 𝑣𝑖 , … , 𝑣𝑁} and the same edge cost representing the discrete environment, there 

are instructions on each node containing the same initial reward value 𝛾 and decay factor 

𝛽. Since moving to any node over twice will increase redundant time, the optimal solution 

will be the path that approaches every node exactly once. In other words, the maximum, 

or optimal, reward will be: 

𝑟𝑂𝑃𝑇 = ∑ 𝛾 ∙ 𝛽𝑖∙𝑐

𝑁

𝑖=1

 (4-3) 

 

Figure 4-4 Household environment to test our method, gray map is the grid occupancy 

map and the discrete graph indicates the topological map. 
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As a result, the decision problem of the optimization becomes “Whether there exists 

a path with accumulative reward that equals to 𝑟𝑂𝑃𝑇?” This statement is identical to the 

definition of well-known Hamiltonian path. It had been proven that the decision problem 

HAMILTONIAN PATH, known as “Given a graph G, does G have a Hamiltonian path?,” 

is NP-complete [63]. Therefore, if HAMILTONIAN PATH problem is reducible to our 

scenario in polynomial time, then according to following theorem from, it can also be 

regarded as a NP-complete problem. It is because that Hamiltonian path is simply a 

special case in our scenario of assigning same initial reward and decay factor, it takes 

polynomial time to reduce any instances from HAMILTONIAN PATH to that from our 

problem. Consequently, according to Theorem 4-1 from Section 4.1.2, the complexity of 

our problem can also be classified into NP-complete. 

 

4.2.3 Algorithm for Task Planner 

To come up with an algorithm, assuming the robot is navigating with its minimum 

velocity, we can divide edges by the multiplication of minimum robot velocity and time 

 

Figure 4-5 A special case of our modeling scenario 
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steps. That is to say, even though the instruction is a decay function related to time, we 

are able to transfer into spatial relation and calculate the expected reward in the indoor 

environment. Besides, one of the advantages of discretizing the environment is that it 

lowers the calculation of the system. That is, the task planner only needs to check the 

expected rewards on individual nodes instead of repeating calculating rewards in the 

overall continuous environment. Therefore, the hierarchical task motion planning is thus 

more efficient than simple motion planning with the help of environment discretization. 

Once launching instructions on a certain node, the expected reward in the special relation 

can be viewed as expanding ripple-like value centering at the semantic nodes with 

maximum value, namely the initial reward. Figure 4-6 shows the ripple-like decaying 

process of the expected reward on our discrete topological map. 

After analyzing the accumulative expected rewards on the neighboring nodes, the 

task planner will choose the one with the highest value as action and pass toward the 

motion planner, generating a motion approaching to the next state. Nevertheless, it is 

somehow memory-consuming for the robot to store numerous nodes and edges, not to 

mention the high variant reward values and the quickly changing robot position. What’s 

worse, the robot moves continuously in the reality. If implementing this discrete TAMP, 

the robot may move and stop repeatedly until reaching the instruction destination, which 

is unfortunately both time-consuming and unpleasant user-experience. These drawbacks 

may cause the robot to fail while processing instructions in practice even though the task 

planner come up with an adequate decision. 
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To overcome the problem, a modified robot state is proposed. Based on the 

topological map from Figure 4-4, the planner first calculate its adjacency matrix as well 

as the shortest matrix through Floyd-Warshall algorithm [63]. The robot location, or state, 

can thus be interpreted as the step distance between the neighboring nodes, as shown an 

illustrative example in Figure 4-7. Given the topological map 𝐺 = (𝑉, 𝐸), the original 

method requires 𝑂(|𝑉| + ∑ 𝑤𝑒𝑒∈𝐸 )  to memorize the total possible states. With our 

conversion, the space complexity can be reduced to 𝑂(|𝑉|2) and the robot state can be 

compressed into a |𝑉| dimensional integer vector. This especially brings an advantage 

as household space becomes larger and the distance between nodes increases. 

 

Figure 4-6 The expected reward estimation in the topological map 
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(a) Topological map 𝐺 = (𝑉, 𝐸) with euclidean distance as weighted edges 

  

(b) Adjacency matrix of (a) (c) Shortest path matrix of (a) 

 

(d) Examples for robot state representation based on (a), (b), and (c) 

Figure 4-7 Robot state representation in the topological map 
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As for the state transition of the robot, there are three cases. First of all, if the robot 

is on the edge, given the next neighboring node 𝑖, the 𝑖th element of the state vector plus 

one while other non-zero elements minus one. Secondly, if one of the non-zero elements 

𝑖 turns to zero during the state transition, that means that the robot reach node 𝑖. Thus, 

the algorithm will copy the 𝑖th raw of the adjacency matrix as the state vector. Lastly, if 

the robot leaves from node 𝑖 to nod 𝑗, indicating that node 𝑖 changes to the neighboring   

node and the 𝑖th element of the state vector becoming one, then the 𝑗th element minus 

one while other elements turn to 0. 

Through the state transition process, the system can not only record the location of 

the robot, but also generate reasonable actions. In other words, the task planner simply 

takes a set of instructions as inputs and returns next neighboring nodes as the direction 

for the robot to follow. As a consequence, given 𝑀 instructions 𝐼 = {(𝛾𝑖, 𝛽𝑖)|∀𝑖 < 𝑀} 

at node C  and the robot location L  with neighboring node A  and B , as Figure 4-8 

shows, the planner will calculate the accumulative expected rewards on L + 1 and L −

1, known as candidate steps, and pick one with the higher valve as the next step. For every 

instruction such as (𝛾𝑖, 𝛽𝑖) in node 𝐶, the calculation can be divided into two steps. First 

the algorithm calculates the expected reward 𝛾𝑖𝛽𝑖
𝑡
 on neighboring nodes. Thanks to the 

 

Figure 4-8 An example to explain the task planner algorithm 
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shortest path matrix, 𝑡 can be obtained by simply extracting the (𝐶, 𝐴) element from 

the matrix as shortest path without redundant shortest path calculation. Furthermore, the 

accumulative reward values on nodes will be memorized. When new instructions are 

launched dynamically, the algorithm simply adds those new expected rewards on the 

existing ones, making the robot handle dynamical multiple social tasks. Next, the 

expected reward of instruction 𝑖 on candidate steps is calculated respectively. Take L +

1 for example, the algorithm finds the shortest path from the instruction to candidate, 

making the expected reward 𝑟𝑖,𝐿+1 =  𝛾𝑖𝛽𝑖
min(𝑘+𝑎,𝑙+𝑏)

. Note that there may exist a case 

that the expected reward may be 𝑟𝑖,𝐿+1 = 𝛾𝑖𝛽𝑖
𝑙−𝑏

, which is the case that edge 𝑙 does not 

exist. Fortunately, this means that 𝑘 + 𝑎 = 𝑙 − 𝑏 < 𝑙 + 𝑏 which still makes the formula 

min(𝑘 + 𝑎, 𝑙 + 𝑏)  valid. Through the iteration, the accumulative expected reward on 

L + 1  is as Eq. (4-4), where the accumulative expected reward on L − 1  can be 

calculated in an identical way. Thus, the task planner takes a series of instructions and the 

current state of the robot as inputs, and returns the next neighbor node for the motion 

planner by Eq. (4-5). Algorithm 4-2 is the detailed pseudo code of the proposed task 

planner. Note that though the time complexity is 𝑂(‖𝑉‖2𝑀), the following experiments 

show that the total processing time of the task and motion planning still maintains its high 

efficiency up to 200 instructions. 

𝑟L+1 =  ∑ 𝛾𝑖𝛽𝑖
𝑡𝑖

𝑖∈𝐼

, 𝑡𝑖 = 𝑚𝑖𝑛(𝐴[𝑖][𝐴] + 𝑎, 𝐴[𝑖][𝐵] + 𝑏) (4-4) 

𝒏̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒏∈𝑵

( ∑ 𝛾𝑖𝛽𝑖
𝑚𝑖𝑛
𝑛∈𝑵

(𝐴[𝑚𝑖][𝑛]+𝒗𝑙[𝑛])
𝑀−1

𝑖=0

) (4-5) 
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Algorithm 4-2 Value Iteration Task Planning 

1.  Input: M instructions on m nodes 𝑰 = {(𝛾𝑖, 𝛽𝑖, 𝑚𝑖)|∀𝑖 < 𝑀, 𝑖 ∈ ℕ} 

2.        Robot at current location L with state vector 𝒔𝒕 ∈ ℕ1×|𝑉| 

3.        Current neighboring nodes 𝑵 = {𝑛0, 𝑛1, … , 𝑛𝑁−1} 

4.        Adjacency matrix 𝐴 ∈ ℝ|𝑉|×|𝑉| 

5.  Define: Candidate state set 𝑪 = {𝒄𝟎, 𝒄𝟏, … , 𝒄𝑵−𝟏} 

6.  for 𝑛 ∈ 𝑵: 

7.      𝒄𝒏 = 𝑠𝑡𝑎𝑡𝑒_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝒔𝒕, 𝑛) 

8.      for 𝐼 ∈ 𝑰: 

9.          𝑝𝑎𝑡ℎ(𝑚𝑖, 𝐼) = min
𝑛′∈𝑵

(𝐴[𝑚𝑖][𝑛′] + 𝒄𝒏[𝑛′]) 

10.          𝑟𝑖 = 𝛾𝑖𝛽𝑖
𝑝𝑎𝑡ℎ(𝑚𝑖,𝐼)

 

11.      𝑟𝑛 = ∑ 𝑟𝑖
𝑀−1
𝑖=0  

12.  𝒏̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑛∈𝑵

(𝑟𝑛) 

13.  𝒔𝒕+𝟏 = 𝒄𝒏̂ 

 

4.2.4 Correctness of the Proposed Task Planning Algorithm 

 

Figure 4-9 The scenario of proving the optimality 

To explain the correctness of the proposed method, let’s start with the following 

scenario shown in Figure 4-9: Given three nodes A, B, C and instructions with tuples of 

initial rewards and decay factors (𝛾0, 𝛽0), (𝛾1, 𝛽1), (𝛾2, 𝛽2) respectively, the goal is to 

prove that the accumulative reward on the edge will always be lower than that of the 
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neighboring nodes. In other words, assuming the robot location L is currently at the edge 

𝐴𝐵̅̅ ̅̅ . 𝑘, 𝑙, 𝑚, 𝑛 represent the edge length. Node s is the node at the edge such that 𝑘 +

𝑚 = 𝑙 + 𝑛. The following description will show that L turns out to move toward either 

node A or node B instead of staying at the edge in between. 

To begin with, it is trivial that given a single instruction, the robot will move toward 

the node with shortest path according the graph. On top of that, let’s consider two arbitrary 

instructions on adjacency node with robot initially staying at the edge in between, which 

can be viewed as the case when 𝛾2 = 0 in Figure 4-9. The expanding reward values are 

like Figure 4-10, as defining the one-dimensional coordinate starting from node A and 

ending at node B for better explanation. Before discussing the first case, we define the 

reward difference function of instruction 𝑖 between point 𝑎 and point 𝑏 as: 

∆𝑟𝑖(𝑎, 𝑏) = 𝑟𝑖(𝑎) − 𝑟𝑖(𝑏) (4-6) 

 

 

Figure 4-10 The expanding rewards of two instructions along 𝐴𝐵̅̅ ̅̅  
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We will show that the robot will move toward nodes instead of getting stuck on the edge 

by contradiction. Assuming that the robot starts at L1 − 1 and stays at L1 on the 𝐴𝐵̅̅ ̅̅  

eventually, which means that  L1 has the highest reward, the reward difference has the 

relationship: ∆𝑟0(L1, L1 − 1) + ∆𝑟1(L1, L1 − 1) > 0, with ∆𝑟0(L1, L1 − 1) < 0.  

However, since the reward functions 𝑟𝑖(𝑥)=𝛾𝑖 ∙ 𝛽𝑖
|𝑠𝑜𝑢𝑟𝑐𝑒(𝑖)−𝑥|

 ( 𝛽𝑖 < 1 ) are 

monotonous increasing/decreasing and asymptotic to 0 as robot location L approaches 

to negative/positive infinitive, the total reward difference between L1 + 1  and L1  is 

larger than that between L1 and L1 − 1. That is to say: 

0 > ∆𝑟0(L1 + 1, L1) > ∆𝑟0(L1, L1 − 1) (4-7) 

∆𝑟1(L1 + 1, L1) > ∆𝑟1(L1, L1 − 1) > 0 (4-8) 

∆𝑟0(L1 + 1, L1) + ∆𝑟1(L1 + 1, L1) > ∆𝑟0(L1, L1 − 1) + ∆𝑟1(L1, L1 − 1) > 0 (4-9) 

Therefore, the above equations reveal that the accumulative reward in L1 + 1 is larger 

than L1, which is paradoxical to the assumption. In other words, the robot will at the end 

 

Figure 4-11 Overall reward distribution of two instructions 
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reach the node instead of getting stuck at the edge. Figure 4-11 illustrates the overall 

reward distribution. 

Next, the case of three instructions will be discussed. According to the initial rewards 

and the decay factors, the expanding rewards of individual instructions along 𝐴𝐵̅̅ ̅̅  are as 

Figure 4-12. Here the discussion can be separated into three cases: 0 < L < 𝑚, L = 𝑚, 

and 𝑚 < L < 𝑚 + 𝑛.  

First of all, given the case 0 < L < 𝑚, supposed that L will eventually stays at L1, 

meaning that “L1 has the highest accumulative reward along 𝐴𝐵̅̅ ̅̅ .” Therefore, if the robot 

starts at L1 + 1, the behavior of moving toward L1 indicates that the reward differences 

∆𝑟0(L1, L1 + 1) + ∆𝑟2(L1, L1 + 1) + ∆𝑟1(L1, L1 + 1) > 0 , with ∆𝑟1(L1, L1 + 1) < 0 . 

Nevertheless, similar to the two-instruction case with reward function  𝑟𝑖(𝑥)=𝛾𝑖 ∙

𝛽𝑖
|𝑠𝑜𝑢𝑟𝑐𝑒(𝑖)−𝑥|

(𝛽𝑖 < 1) being monotonous and asymptotic to 0 at the infinity points, the 

total reward differences between L1 − 1 and L1 is larger than that of L1 and L1 + 1. 

Namely: 

 

Figure 4-12 The expanding rewards along 𝐴𝐵̅̅ ̅̅  
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∆𝑟0(L1 − 1, L1) > ∆𝑟0(L1, L1 + 1) > 0 (4-10) 

0 > ∆𝑟1(L1 − 1, L1) > ∆𝑟1(L1, L1 + 1) (4-11) 

∆𝑟2(L1 − 1, L1) > ∆𝑟2(L1, L1 + 1) > 0 (4-12) 

∆𝑟0(L1 − 1, L1) + ∆𝑟1(L1 − 1, L1) + ∆𝑟2(L1 − 1, L1)

> ∆𝑟0(L1, L1 + 1) + ∆𝑟1(L1, L1 + 1) + ∆𝑟2(L1, L1 + 1) > 0 
(4-13) 

As a result, the larger accumulative reward pulls the robot to move from L1 to L1 − 1, 

and eventually reaches node A, which contradicts to the assumption “L1 has the highest 

accumulative reward along 𝐴𝐵̅̅ ̅̅ .” This also explain the case when 𝑚 < L < 𝑚 + 𝑛. 

As for the L = 𝑚 case, the question can be interpreted as “whether the robot will 

eventually stay at 𝑚 .” If not, then it can be transformed into the above two cases. 

Supposed L starts at 𝑚 − 1, it will move to 𝑚 according to the scenario, meaning that: 

 ∆𝑟0(𝑚 − 1, 𝑚) < 0 (4-14) 

∆𝑟1(𝑚 − 1, 𝑚) > 0 (4-15) 

∆𝑟2(𝑚 − 1, 𝑚) < 0 (4-16) 

∆𝑟0(𝑚 − 1, 𝑚) + ∆𝑟1(𝑚 − 1, 𝑚) + ∆𝑟2(𝑚 − 1, 𝑚) > 0 (4-17) 

Nevertheless, as 𝑘 + 𝑚 = 𝑙 + 𝑛, ∆𝑟2(𝑚, 𝑚 + 1) becomes positive and ∆𝑟1(𝑚, 𝑚 + 1) 

increases, the total reward difference, shown from Eq. (4-18) to (4-21), gets higher. Thus, 

𝑚 is not the highest reward and the robot will move to node B. 

∆𝑟0(𝑚 − 1, 𝑚) < ∆𝑟0(𝑚, 𝑚 + 1) < 0 (4-18) 

∆𝑟1(𝑚, 𝑚 + 1) > ∆𝑟1(𝑚 − 1, 𝑚) > 0 (4-19) 
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∆𝑟2(𝑚 − 1, 𝑚) < 0 < ∆𝑟2(𝑚, 𝑚 + 1), |∆𝑟2(𝑚 − 1, 𝑚)| = |∆𝑟2(𝑚, 𝑚 + 1)| (4-20) 

∆𝑟0(𝑚, 𝑚 + 1) + ∆𝑟1(𝑚, 𝑚 + 1) + ∆𝑟2(𝑚, 𝑚 + 1)

> ∆𝑟0(𝑚 − 1, 𝑚) + ∆𝑟1(𝑚 − 1, 𝑚) + ∆𝑟2(𝑚 − 1, 𝑚) > 0 
(4-21) 

From the description above, one can find out that the highest reward occurs at 

instruction nodes instead of edges. As a consequence, the correctness of the proposed 

method can be explained. To give a brief summary, the robot can reach toward human 

and complete instructions with the proposed value iteration algorithm. The red curve in 

Figure 4-13 is the accumulative reward function along 𝐴𝐵̅̅ ̅̅  from these three instructions 

given the illustrative example. 

Besides, while the expected reward expands in a ripple-like way in the discretized 

environment, it will not decay with time. The reason is to prevent starving from the users. 

In other words, if the ripple-like expected reward decays with time, the previous 

instructions that haven’t be done may even be postponed since the newly-add instructions 

 

Figure 4-13 The accumulative reward function along 𝐴𝐵̅̅ ̅̅  



doi:10.6342/NTU201902426

 61 

always contain higher reward values. In this case, those previously launched instructions 

with medium priorities will not be done until newly-added instructions with lower 

priorities are completed, leading to unpleasant user experience. Thus, we consider the 

reward expansion only once such that those previous instructions can still be executed. 

 

4.2.5 Integration of Proposed TAMP 

The overall TAMP system can be complete through merging the task planning 

algorithm and the motion planner. Aside from dynamic window approach (DWA) 

provided from Section 4.1.1, we propose another solution for real-time obstacle avoidance 

in the motion planner that utilizes long short-term memory (LSTM). The motion planner 

takes the previous paths as well as surrounding obstacles as inputs and predict a potential 

collision-free trajectory for the mobile robot. In addition, the proposed LSTM model 

requires relative small GPU resource that can be implemented on embedded system. This 

real-time obstacle avoidance method has been proposed in [75]. 

Recalling the instruction cycle in the computer architecture, an instruction basically 

goes through four processes: fetch, decode, execute, write back. Inspired from this cycle 

in the central processing unit (CPU), Figure 4-14 shows the flow chart of the proposed 

integration. The system receives the visual and verbal perception results, transform into 

instructions, and write into the task buffer. Next, the task planner fetches the instruction, 

decodes into individual reward, decay factor, and function that affects the target. After the 

decision, or the next neighboring node to move, is passed to the motion planner, the 

motion planner will execute the result by generating a collision-free trajectory and 

navigating toward the destination. Finally, the motion planner will send the message 

whether the instruction is completed or not and write back to the task buffer. Through this 

process, the system is able to generate suitable decisions and organize the instruction set. 
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Therefore, the TAMP serves as a bridge that links the theoretical algorithm into practical 

applications. 

 

 
Figure 4-14 The integration flow chart of the proposed TAMP 
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Chapter 5 Experimental Results 

In this chapter, we conduct the experiments and discuss the results in both perceptions 

as well as decision making. The following sections include environment setup, testing 

dataset based on the Pepper robot, experiments for perceptions, and experiments for 

dynamic multi-task social navigation. 

 

5.1 Environment Setup 

 

(a) Indoor household environment 

 

(b) Pepper robot and sensors 

Figure 5-1 Environment hardware setup 
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The experiment is conducted in an indoor household environment of with width and 

depth being 6.8  and 11.8  meters, respectively, as shown in Figure 5-1(a). The built 

map can be seen in previous Figure 4-4. This environment contains office, bedroom, 

charging place, living room, and dining room. The overall system is running through the 

desktop with Intel® Core™ i7-8550U (1.80 GHz x 8) CPU, and NVIDIA-1080Ti GPU. 

The system is built under ROS (Robot Operating System) with Kinetic attribute and the 

proposed architecture is programmed by Python 2.7. The robot on which we implement 

our system is the social robot, Pepper, as shown in Figure 5-1 (b), embedded with Quad 

Core as CPU. Also, it contains top camera, bottom camera, and depth camera, all with 

resolution 320 × 480 and 4 frames per second. As for its mobility, Pepper contains three 

omnidirectional ball wheels. On top of that, we utilize the laser range finder on Pepper 

for SLAM which has merely 45 laser beams within 180 degrees. 

 

5.2 Experiments: Visual Perception 

The most critical part of verbal perceptions in our system lies in the speech to text 

algorithm. Since we leverage the open-source packages which perform robust STT and 

sentiment recognition, our experiments mostly focus on evaluations of visual perceptions. 

With the combination of deep learning techniques as well as heuristic algorithms, our 

proposed approach produces satisfactory results in real time. Furthermore, we collect a 

visual dataset with labeled frames so as to evaluate the visual perception abilities. The 

following sections includes the experiments in human localization, human identification, 

and action detection. 
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5.2.1 Human Localization Evaluation 

To evaluate the human localization ability, we draw a square on the ground with 

1.2 m  length in each edge in front of Pepper with the front edge being at 1.5 m 

distance. While the person walks along the edge of the square, the robot localizes him and 

records the position relative to the robot coordinate. Then, we calculate the Euclidean 

distance error between the square and the human path. The result shows that the average 

error is simply 0.28 m, with the maximum error being 0.58 m, which is acceptable for 

the robot to recognize the semantic location of the human. Figure 5-2 shows the 

aforementioned visualization of the experimental. 

 

  

(a) Depth bounding box of human (b) Result of human localization 

Figure 5-2 The visualization of human localization. (a) shows the depth image and the 

human bounding box. (b) is the result of localization, where blue points are the human 

walking path and green square is the ground truth trajectory. 



doi:10.6342/NTU201902426

 66 

5.2.2 Pepper Image Testing Dataset  

 

(a) Distribution of frames relative to actions 

 

(b) Distribution of frames relative to people 

Figure 5-3 The number distribution of our testing dataset 

Before discussing the experiments on human identification and action detection, we 

first introduce the self-collected testing dataset from the stitching image of Pepper’s 

camera. We record 13 actions, including eating, drinking, watching TV, chatting, calling, 

reading, working, storing, sleeping, going out, and washing. The dataset consists of 9 

people involved in these actions, obtaining 103 video streams. After that, we separate 

every video into frames and label them one by one through graphic user interface, where 

each frame is assigned a single action label. Noted that there may exist frames that cannot 
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be classified into the above 13 actions, and those frames are labeled as others. The total 

number of frames after processing is 4974, where the distribution of actions and people 

are shown in Figure 5-3. Figure 5-4 are some exemplar frames in our testing dataset. 

      

      

      

      

      

      

 

Figure 5-4 Some example images inside the Pepper Image Testing Dataset. 
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5.2.3 Human Identification Evaluation 

Table 5-1 An illustrative example of color metric 

 (a) Query image (b) Test image 

Image 

  

Shirt color 

      

Value 

R 215 32 29 253 172 87 

G 250 77 74 255 190 100 

B 220 238 219 199 168 142 

Color metric 189.43 

  

Before the experiment, here is an illustrative example of how Algorithm 3-1 works. 

Given a query image as shown in Table 5-1(a), the robot captures the shirt color at the 

joints and stores in the human database with the name of the person. Later on, while the 

robot navigates in the environment and sees a person as shown in Table 5-1(b), it will 

again capture the shirt color at the joints and compare the existing colors in the database 

through the approximated color metrics (Eq. (3-6) to Eq. (3-10)). 

Our human identification approach can be evaluated by first giving the query images 

and then measuring the approximated color metrics between the query images and the 

testing images. The query images can be obtained while Pepper greets toward the person, 

and the test images come from the Pepper Image Testing Dataset. Table 5-2 shows the 
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results between query images and test images. As a consequence, we can define the 

threshold as 200 such that the robot can classify different people from the dataset. 

 

5.2.4 Framewise Hierarchical Human Action Detection Evaluation 

The proposed framewise hierarchical human action detection can also be evaluated 

from the Pepper Image Testing Dataset. Given a series of labeled images separated from 

the videos, the program outputs predictions on the basis of YOLO [20][21][22] and 

OpenPose [46]-[49]. Table 5-3 and Table 5-4 show the visualization of the action 

detection process. In Table 5-3, given the currently observed frame, YOLO and OpenPose 

detect human and objects as well as and skeleton, respectively. After that, the algorithm 

captures the objects which near hands are sofa and remote, and which under eye sight are 

chairs, sofa, and remote. These bring clues that affect the action probabilities, namely, 

𝑝(𝑎𝑐𝑡𝑖𝑜𝑛|𝑶𝒉) and 𝑝(𝑎𝑐𝑡𝑖𝑜𝑛|𝑶𝒆), and the algorithm finally classifies the human action 

with the maximum probability 𝑝(𝑎𝑐𝑡𝑖𝑜𝑛). In this case, the action is watching TV. 

Table 5-2 The approximated color metric of query images and testing images 

Query  Test 

      

A 

 

124.4 172.4 422.4 387.2 301.1 300.2 

B 

 

387.8 417.5 34.5 186.1 295.1 390.7 

Results A A B B None None 
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As shown in the following Table 5-4, after knowing the target through human 

identification, Pepper is able to perceive that the target is looking at human with the help 

of YOLO. Thus, through the framewise hierarchical action detection, the robot can easily 

find out that the target is chatting with another person. 

Table 5-3 The visualization of action detection process (1) 

Image 

  

YOLO object detection OpenPose skeleton detection 

𝑶𝒉 sofa, remote 

𝑶𝒆 chair, chair, sofa, remote 

 eat drink TV chat call read work store sleep leave wash other 

𝑝(𝑎𝑐𝑡𝑖𝑜𝑛|𝑶𝒉) 0 0 0.7 0.06 0.06 0.06 0.06 0 0.06 0 0 0 

𝑝(𝑎𝑐𝑡𝑖𝑜𝑛|𝑶𝒆) 0 0 1 0 0 0 0 0 0 0 0 0 

𝑝(𝑎𝑐𝑡𝑖𝑜𝑛) 0 0 0.85 0.03 0.03 0.03 0.03 0 0.03 0 0 0 

result Watch TV 
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The accuracy of the action detection can be evaluated through confusion matrix, as 

shown in Figure 5-5. Due to the fact that objects such as bowls, cups, books, TV monitor 

and keyboards are large enough for YOLO to come up with true positive detection 

robustly, actions like eat, drink, read, and work that are related to those objects have 

higher accuracy over 0.8. On the contrary, since the resolution of the camera on Pepper 

is too low, objects such as remote and tooth brush are too small to be captured through 

YOLO. Consequently, the accuracy of action like wash is much lower among other 

actions. Nevertheless, our system can classify those unclear actions to others, and thus 

Table 5-4 The visualization of action detection process (2) 

Image 

  

YOLO object detection OpenPose skeleton detection 

𝑶𝒉 chair 

𝑶𝒆 person 

 eat drink TV chat call read work store sleep leave wash other 

𝑝(𝑎𝑐𝑡𝑖𝑜𝑛|𝑶𝒉) 0 0 0.17 0.17 0.17 0.17 0.17 0 0.17 0 0 0 

𝑝(𝑎𝑐𝑡𝑖𝑜𝑛|𝑶𝒆) 0 0 0 1 0 0 0 0 0 0 0 0 

𝑝(𝑎𝑐𝑡𝑖𝑜𝑛) 0 0 0.076 0.62 0.076 0.076 0.076 0 0.076 0 0 0 

result Chat 
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the robot can still detect whether the person is sitting, standing, or lying even under the 

condition that the object detection is not precise, showing satisfactory robustness of our 

proposed framewise hierarchical action detection framework. 

While taking advantage from both deep learning methods as well as heuristic 

algorithms, and allocating computational resource, the robot is able to perform real-time 

visual perception on answering “where the person is?”, “who is the person?”, and “what 

is the person doing?”. Through the experiments, we demonstrate that our proposed visual 

perception system can generate adequate results, including human localization, human 

identification, and framewise action detection, with both efficiency and robustness. 

 

 

Figure 5-5 Confusion matrix of proposed action recognition algorithm 
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5.3 Experiments: Dynamic Multi-Task Social Navigation 

In our decision-making system, we first analyze the proposed system in the aspect 

of both efficiency and optimality under simulation scenarios, in comparison to other 

classic planners including First Come First Serve (FCFS), Randomize (Rand), Priority 

First (PF), and Shortest Time First (SF). FCFS simply considers the launching time of 

instructions, or namely the id of the instructions in Table 4-1; Rand picks instructions 

randomly; PF always does the instruction with the highest priority, which can be obtained 

from initial reward γ  in Table 4-1; on the other hand, SF checks the summation of 

navigation time and instruction duration and processes the one with minimum time. 

Furthermore, aside from the simulation, the real world applications are also evaluated. 

 

5.3.1 Optimality Comparison of Task Planner Algorithm 

 As mentioned in Section 4.2.1, the priority sequence of the instructions in a 

descendent order are: physical help, negative mood, neutral mood, positive mood, and 

self-generated commands from the robot. To quantify those priorities, we suggest using 

descendent Fibonacci sequence (FS) 𝜸𝑭𝑺={8, 5, 3, 2, 1} subject to the priority. As for the 

decay factor 𝛽 as mentioned before, we simply choose β={0.98, 0.96, 0.94, 0.92, 0.9} 

with regard to the priority. Table 5-5 shows the relations between the priority and the 

initial reward γ  as well as decay factor 𝛽 . Thus, the accumulative reward of 𝑀 

instructions will be 𝑟 = ∑ 𝛾𝑖𝛽𝑖
𝑡𝑖𝑀

𝑖=1 , where 𝑡𝑖 indicates the time duration of instruction 

Table 5-5 The table of priority quantification 

Priority physical negative neutral positive self-generated 

Initial reward γ 8 5 3 2 1 

Decay factor 𝛽 0.98 0.96 0.94 0.92 0.9 
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𝑖  from launching until being completed by the robot. With these definitions, we can 

obtain the optimal accumulative reward by the proof of exhaustion, which require 𝑂(𝑀!) 

time if there exists 𝑀  instructions. By analyzing the accumulative reward of given 

random ten tasks, the optimality of the proposed algorithm with regard to other classic 

planners can be evaluated. 

Given an example scenario as Table 5-6 where there exists ten instructions to be 

solved, Figure 5-6 presents the accumulative reward curve of different planners with 

regard to time. First of all, one can easily observes that the optimal planner (Opt) 

undoubted the highest reward in a short period of time, as shown in the pink line. However, 

since the time complexity is 𝑂(10!) , this planner becomes too time-consuming to 

generate the optimal plan, which takes over 200 seconds. As a result, the accumulative 

reward of the optimal planner with motion turns out to be the lowest when taking the 

decision time into account, as shown in the grey line (Opt w/m), not to mention that it is 

the most time consuming planner among all. On top of that, our hardware runs out of the 

Table 5-6 The example task scenario of our simulation 

 

id 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

𝛾 3 8 1 1 2 3 1 5 2 8 

𝛽 0.94 0.98 0.9 0.9 0.92 0.96 0.9 0.96 0.92 0.98 
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computational resources and crushes if there exist more than ten remaining instructions 

for exhaustion method. That is, although the exhaustion method seems to solve the 

problem wisely, it cannot be implemented in a practical way. 

Secondly, since the shortest time first planner (SF) always picks the remaining 

instruction with the minimum time requirement, it completes all the instructions in a 

relatively short period of time, as the yellow line shown in Figure 5-6. Nonetheless, due 

to the fact that the SF does not concern the priority of human requests, there is a large gap 

between the accumulative reward of SF and that of the optimal planner. On the other hand, 

the priority first planner (PF) earns more reward than SF as it always picks the remaining 

instruction with the maximum initial reward, as shown in the green line, but it takes more 

time to finish all the instructions, which is even more inefficient than the first come first 

serve planner (FCFS). As for our planner, the red line, obtains high accumulative reward 

while completing all the instructions in a short time among all the other planners. That is 

to say, comparing to the classical planners, our planner shows its optimality in scheduling 

multiple social instructions. The following Figure 5-7 is another example scenario of 

 

Figure 5-6 The accumulative reward of example Figure 5-13 
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random ten instructions, from which our planner completes all the instructions even faster 

than the SF, while the PF shows less optimal and efficient than FCFS. Table 5-7 shows 

the average accumulative reward and completing time of different planners given 10 

instructions randomly. 

Furthermore, not only can we estimate the accumulative reward with respect to the 

optimal sequence but also analyze the similarity. Before that, a metric to measure the 

similarity is required. Given an instruction sequence 𝐴, we can define the position of a 

certain instruction with index 𝑖𝑑 as 𝑝𝑜𝑠𝐴(𝑖𝑑), starting from 1. For example, given the 

sequence 𝐴 = {2, 4, 3, 1}, the position of instruction index 4 will be 𝑝𝑜𝑠𝐴(4) = 2. 

Concerning the similarity degree, we define the cost by comparing the position distance 

 

Figure 5-7 The accumulative reward of arbitrary ten instructions 

Table 5-7 The average reward and completing time of given random instructions 

 

Planner Opt Opt w/m FCFS Rand PF SF Ours 

reward 13.18 0.76 5.75 4.68 8.26 9.79 11.87 

time 89.44 208.73 345.96 344.3 320.46 158.07 159.31 
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of two instruction sequence. Given 𝑀  instructions {1, 2, … , 𝑀}  and two different 

sorted sequences 𝐴 and 𝐵, Eq. (5-1) shows the calculation of similarity cost. 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑠𝑡 = ∑|𝑝𝑜𝑠𝐴(𝑖) − 𝑝𝑜𝑠𝐵(𝑖)|

𝑀

𝑖=1

 (5-1) 

For instance, given sequences 𝐴 = {2, 4, 3, 1} and 𝐵 = {1, 2, 3, 4}, the similarity 

cost of single element 1 is |4 − 1| = 3, and the total similarity cost will be |4 − 1| +

|1 − 2| + |3 − 3| + |2 − 4| = 6, referring to the above Eq. (5-1). 

Table 5-8 is the similarity comparison of scenario in Table 5-6, which shows that our 

planner has the least cost and highest similarity among other planners with regard to the 

optimal solution. Moreover, the sequence also shows that both our planner and the 

optimal one tends to complete all the instruction that place at the same location. The 

average similarity cost of given random ten instructions is shown in Table 5-9, which also 

tells that our planner is the most similar toward the optimal planner, inferring its high 

optimality. 

 

Table 5-8 Similarity comparison of instruction order of planners 

 Instruction id sequence cost 

Opt 1 2 8 6 10 9 7 3 5 4 - 

FCFS 1 2 3 4 5 6 7 8 9 10 30 

Rand 9 1 4 7 5 2 3 10 8 6 40 

PF 2 10 8 1 6 9 5 3 4 7 14 

SF 1 4 3 5 6 8 9 7 10 2 36 

Ours 2 1 10 8 6 7 9 5 3 4 10 

Table 5-9 The average similarity cost of given random instructions 

Planner Opt FCFS Rand PF SF Ours 

cost - 31.78 36.22 19.33 28.66 15.78 
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5.3.2 Efficiency Comparison of Task Planner Algorithm 

The efficiencies of different task planners are compared in this section. Given a 

series of instructions randomly, the total processing time of different planners can be 

evaluated. Figure 5-8 is the average total processing time with regard to different numbers 

of instructions. Note that since the optimal planner only accommodates up to ten 

instructions, this experiment does not take it into comparison. 

While increasing the instruction number, the complete time of FCFS undoubted rises 

dramatically since it takes neither priority nor task time into consideration. As for Rand, 

though there may exist cases with lower processing time, most of the possible planning 

sequences are not efficient enough and thus the average total time sours as the number of 

instructions increases. The PF planner, while merely taking the priority of instructions 

into consideration, can be regarded as sorting the priority of instructions at first and then 

performs the FCFS. Therefore, the processing time curve is similar to FCFS and also 

quite inefficient. In contrast, the SF greedily picks the instruction that requires the 

 

Figure 5-8 Processing time of different numbers of instructions 
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minimal navigation time and instruction performing time. Therefore, it decreases the total 

processing time. Nevertheless, SF does not take the priority into concern and may thus 

not meet the human needs, making the robot less optimal as the previous section presents. 

In our algorithm, not only does the time but also the priority be concerned when planning. 

As a consequence, the proposed task planner can complete instructions faster than most 

of the algorithms, especially in a large scale as 200 instructions. 

To further analyze the efficiency, the ratio of performing instructions and total 

processing time is calculated as Eq. (5-2), where the 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒  equals the sum of 

𝑡𝑎𝑠𝑘 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒, and 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒.  

𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑡𝑎𝑠𝑘 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒
 (5-2) 

That is to say, the higher the ratio is, the more time the planner spends on completing 

human requests rather than wandering for a long time. Figure 5-9 shows the time ratio 

with regard to the number of randomized instructions, through which the proposed 

 

Figure 5-9 Time ratio of processing instructions 
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algorithm shows high efficiency among other planners. On the contrary, the FCFS, PF, 

and Random spend more time on navigation, leading to less efficiency than ours. To give 

a brief summary, our planner shows both optimality and efficiency in the given scenario. 

Not only does it earn the highest accumulative reward, but also complete all the 

instructions in a relative short period of time. 

 

5.3.3 Real World Implementation and Analysis 

 

Figure 5-10 The accumulative reward of simulation and real world implementation 

After comparing with different planners in the simulation environment, we show that 

our planner is the most optimal and efficient among all other planners. On top of that, we 

will show the experimental results of our real world implementation. The accumulative 

reward curves of our planner in both simulation and real world implementation are shown 

in Figure 5-10, where the pink curve is still the theoretical optimal reward from 

exhaustion, red curve is the simulation result, and the light blue curve is the 

implementation result in the real world. 
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On the other hand, as for the efficiency, we run our system in the real world and 

analyze the total processing time and time ratio given arbitrary ten instructions. The 

results are presented in both Figure 5-11 and Figure 5-12, which again show that our 

implementation results meet the simulation and thus have high efficiency in completing 

up to 200 tasks. These results show that our real world application truly fits the simulation 

result with respective to not only the optimality analysis but also the efficiency evaluation. 

 

Figure 5-11 The total processing time in simulation and real world implementation 

 

Figure 5-12 The time ratio of simulation and real world implementation 
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5.3.4 Similarity Comparison of Task Planner Algorithm 

 

Figure 5-13 An example questionnaire of random instructions for human scheduling 

Last but not the least, it is worth mentioned that the optimal solution of our scenario 

is similar to human scheduling in the small scale within 10 instructions. In other words, 

given random 10 instructions, the completion of the entire instruction sequence which 

earns the optimal reward should have low similarity cost with that of human scheduling. 

To evaluate this, a questionnaire is designed by randomly generating instructions and 

mapping them on the discrete graph. One of the examples is shown in Figure 5-13. 

Although the tasks in the questionnaire are written in Chinese for reading convenience, 

our instructions include functions like “chatting”, “encourage”, “check status”, “ask 

physical request”, which can be successfully mapped to the our proposed instruction 

structure as listed in Table 4-1. 

While the volunteers fill the questionnaire and generate sequences of instructions, 

we can also select initial reward value to represent the priority. During this experiment, 

we first calculate the average index of each instruction, where the formula of average 

index 𝑥𝐼̅ of an arbitrary instruction 𝐼 given 𝑀 samples is as the following Eq. (5-3).  

𝑥𝐼̅ =
1

𝑀
∑ 𝑖𝑑𝑘(𝐼)

𝑀−1

𝑘=0

 (5-3) 
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Let’s take an instruction set {1, 2, 3, 4}  as example. Supposed there are three 

samples from the questionnaire: 𝐴 = {2, 4, 3, 1}, 𝐵 = {1, 2, 3, 4}, and 𝐶 = {3, 2,

1, 4} , the average index of instruction 1  equals to 
4+1+3

1+1+1
= 2.67 , and the overall 

average index of the instruction set {1, 2, 3, 4}  will be as {2.67, 1.67, 2.33, 3.33} 

respectively. The instruction sequence sorted by this average index will be {2, 3, 1, 4}. 

This analysis highlights the trend of the order among every elements in the sequence even 

under few samples, which leads to more adequate results than picking the mode from the 

questionnaire. 

As for the user study, we will take Figure 5-13 for instance again. Table 5-10 shows 

the comparison between human scheduling and the optimal scheduling. The sequence of 

Human is sorted through average index analysis, and the Optimal comes from the 

exhaustion method. With the similarity cost being 2.0 merely, the optimal scheduling 

shows high similarity relative to human scheduling. Since the optimal scheduling has high 

similarity with regard to human scheduling, it can be concluded that under the small scale 

within 10 instructions, the more optimal a planner is, the more human-like task 

scheduling it generates. In other words, our planner, while aims to complete instructions 

as fast as possible, sorts the instructions in a human-like way, making the robot become 

the most “considerate” among all the other planners. 

Table 5-10 Similarity comparison between human scheduling and optimal solution 

 Instruction id sequence cost 

Human 
𝑥̅ 1.2 1.6 4.3 4.7 4.9 6.4 7.1 7.2 8.2 8.5 

 
Sequence 1 2 6 8 10 9 7 3 5 4 

Optimal Sequence 1 2 8 6 10 9 7 3 5 4 2.0 
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Chapter 6 Conclusion and Future Works 

In this thesis, we propose a system integrating perception and decision making to 

achieve human robot interaction for social robots. While implementing the perception 

system, the robot is able to perceive human status both visually and verbally. With the 

assist of deep learning frameworks such as YOLO and OpenPose, the robot can detect 

objects and skeletons precisely, and the heuristic algorithms can thus simultaneously 

generate accurate real-time functionalities like human localization, human identification, 

and framewise hierarchical action detection. With the combination of deep learning and 

heuristic algorithms, the system is capable of performing accurate perceptions in real time. 

Moreover, we design a data structure to store these results in an efficient way so that the 

robot can memorize human information for future usage. In addition, we also design an 

instruction structure for the robot to digest perceptions into executable instructions. 

As for the decision making system, we propose a model to not only transform the 

household environment into discrete graph but also formulate instructions into time-

decaying reward functions. This model further formulates our goal of completing all the 

instructions into an optimization problem. Leveraging from the Task and Motion Planning 

(TAMP) architecture, we design a task planning algorithm with the purpose of 

maximizing the accumulative reward. Furthermore, this algorithm can also deal with 

dynamic instruction scenarios in an efficient way such that the robot can react toward 

newly-added requests from human-beings in time. On top of that, we take the 

computational resource into consideration such that the whole system can be processed 

with a single desktop. 

The experiments demonstrate that both the perception and decision make effective and 

efficient outputs. In the visual perception part, the system can localize human in the 
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semantic location with relative low error in real time. The system can as well identify 

human with the stored clothing colors given the current observation frame. On top of that, 

the action detection generates satisfactory outputs. These evaluations can be established 

from the self-collected Pepper Image Testing Dataset. 

As for the decision making validations, we compare our proposed task planning 

algorithm with classic planners like First Come First Serve, Randomize, Priority First, 

Shortest Time First. First of all, from the optimality analysis, the proposed algorithm 

obtains the highest accumulative reward in relatively short time. Secondly, for the 

efficiency evaluation, the proposed algorithm can complete 200 instructions a lot faster 

than any other planners. Besides, it also has higher time ratio of instruction processing 

among all the other planners. Last but not least, from the similarity comparison, we show 

that the more optimal the planner is, the more human-like decision it makes. Thus, we 

show that our planner can achieve every tasks considering both human robot interactions 

and time efficiency. 

The future work of this thesis is to expand the system with regard to multiple robots. 

As there may exist multiple robots in an elder house in the near future, the scenario of 

distributing instructions for them to accomplish while concerning optimality, efficiency 

and user experience shall be a critical issue. Besides, the algorithms for error handling 

with the view to robust applications can also be developed. On top of that, the 

functionality of robots can also be enlarged on the basis of our instruction structure to 

achieve even more complex tasks. As for the human identification, the system can apply 

both faces for static features and cloth colors as dynamic keys to avoid human 

interruptions. To sum up, our system provides a fundamental framework that mixes 

perceptions and decision making such that the robot can improve our society in a more 

practical way. 
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