SHAO-HUNG CHAN

Email: shaohung@usc.edu | Website: https://github.com/shchan13

RESEARCH 1	INTERESTS
------------	-----------

Multi-Agent Path Finding ((MAPF), Task and	d Motion Planning	(TAMP), Artificia	l Intelligence

Multi-Agent Path Finding (MAPF), Task and Motion Planning (TAMP), Artificial Intelligence	
EDUCATION	
University of Southern California	Fall 2019-Present
Ph.D. in Computer Science	
National Taiwan University, Taipei, Taiwan	Fall 2017-Spring 2019
Master of Science in Electrical Engineering	
Overall GPA: 4.14/4.3 (4.0/4.0)	
National Cheng Kung University, Tainan, Taiwan	Fall 2013-Spring 2017
Bachelor of Science in Electrical Engineering	
Overall GPA: 4.23/4.3 (4.0/4.0), Cumulative score: 93.69/100, Graduation Rank: 3/159 (1.9%)	
Outstanding student for the academic achievement in the school year 2015-2016.	E 11 401 (
Exchange Program to University of California, Berkeley	Fall 2016
Be the only recipient of 4000 USD exchange student fellowship from NCKUEE to UCB	
PUBLICATIONS	
Book (1)	
■ Artificial Intelligence and Automation	Fall 2020
Sven Koenig, Shao-Hung Chan, Jiaoyang Li, Yi Zheng	
Conference Presentations (13)	- · · · · · ·
■ International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS)	Fall 2023
Shao-Hung Chan, Zhe Chen, Dian-Lun Lin, Yue Zhang, Tsung-Wei Huang, Daniel Harabor,	
Sven Koenig, Thomy Phan,	
"Anytime Multi-Agent Path Finding using Operation Parallelism in Large Neighborhood	
Search (Extended Abstract)." International Joint Conference on Artificial Intelligence (IJCAI)	Spring 2023
International Joint Conference on Artificial Intelligence (IJCAI) Carlos Hernández, William Yeoh, Jorge A Baier, Ariel Felner, Oren Salzman, Han Zhang, Shao-	Spring 2025
Hung Chan, Sven Koenig,	
"Multi-objective search via lazy and efficient dominance checks."	
■ International Symposium on Combinatorial Search (SoCS)	Spring 2023
Shao-Hung Chan, Roni Stern, Ariel Felner, Sven Koenig,	~pg = v=v
"Greedy Priority-Based Search for Suboptimal Multi-Agent Path Finding". [link]	
■ International Symposium on Combinatorial Search (SoCS)	Spring 2022
Eli Boyarski, Shao-Hung Chan, Dor Atzmon, Ariel Felner, Sven Koenig,	1 8
"On Merging Agents in Multi-Agent Pathfinding Algorithms" (Best Student Paper). [link]	
■ AAAI Conference on Artificial Intelligence (AAAI)	Fall 2021
Shao-Hung Chan, Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter Stuckey, Sven Koenig,	
"Flex Distribution for Bounded-Suboptimal Multi-Agent Path Finding". [link]	
■ Extended Abstract on International Symposium on Combinatorial Search (SoCS)	Spring 2021
Shao-Hung Chan, Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey, Sven Koenig,	
"ECBS with Flex Distribution for Bounded-Suboptimal Multi-Agent Path Finding". [link]	
Extended Abstract on International Symposium on Combinatorial Search (SoCS)	Spring 2021
Han Zhang, Mingze Yao, Ziang Liu, Jiaoyang Li, Lucas Terr, Shao-Hung Chan , T. K. Satish	
Kumar, Sven Koenig,	
"A Hierarchical Approach to Multi-Agent Path Finding." [link] International Conference on Automated Planning and Scheduling (ICAPS)	Spring 2021
■ International Conference on Automated Planning and Scheduling (ICAPS) Jiaoyang Li, Zhe Chen, Yi Zheng, Shao-Hung Chan, Daniel Harabor, Peter J. Stuckey, Hang	Spring 2021
Ma, Sven Koenig,	
"Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge". [link]	
■ Workshop on Multi-agent Path Finding at IJCAI (WoMAPF)	Fall 2020
Shao-Hung Chan, Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Graeme Gange, Liron Cohen,	1 un 2020
Sven Koenig,	
"Nested ECBS for Bounded-Suboptimal Multi-Agent Path Finding". [link]	
■ IEEE International Conference on Systems, Man, and Cybernetics (SMC)	Fall 2019
Shao-Hung Chan, Xiao-Yue Xu, Ping-Tsang Wu, Ming-Li Chiang, Li-Chen Fu,	
"Real-time Obstacle Avoidance using Supervised Recurrent Neural Network with Automatic	
Data Collection and Labeling". [link]	
■ IEEE International Conference on Intelligent Robots and Systems (IROS)	Fall 2019
Ping-Tsang Wu, Chee-An Yu, Shao-Hung Chan, Ming-Li Chiang, Li-Chen Fu,	

 "Multi-Layer Environmental Affordance Map for Robust Indoor Localization, Event Detection and Social Friendly Navigation". [link] ■ IEEE International Conference on Systems, Man, and Cybernetics (SMC) Shao-Hung Chan, Ping-Tsang Wu, Li-Chen Fu, "Robust 2D Indoor Localization through Laser SLAM and Visual SLAM Fusion". [link] 	Fall	2018
■ IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Shih-Hsi Hsu, Shao-Hung Chan, Ping-Tsang Wu, Kun Xiao, Li-Chen Fu, "Distributed Deep Reinforcement Learning based Indoor Visual Navigation". [link]	Fall	2018
HONORS & AWARDS		
Best Paper Award in SoCS 2022	Spring	2022
PhD Sandwich Program at Ben-Gurion University of the Negev	Spring	
First Place in Flatland Challenge in NeurIPS 2020 Competition		2020
Rank 1 in both round 1 and round 2		
Best Master Thesis Award of the year in NTUEE	Spring	2019
Best Student Paper Award Finalist of IEEE SMC Society [pdf]	Fall	2018
Outstanding Student for the Academic Achievement in the School Year 2015-2016	Spring	2017
■ Graduation Rank: 1/37 (class), 3/159 (department), Overall GPA: 4.23/4.3		
RESEARCH EXPERIENCES		
PlanViz: A visualization tool for the League of Robot Runners Competition [link]	Spring	2023
Supervised by Prof. Daniel Harabor and Prof. Sven Koenig	Spring	2020
■ Develop visualization tool for Multi-Agent Path Finding.		
Parallel Programming for Multi-Agent Path Finding	Fall	2023
Supervised by Dr. Thomy Phan and Prof. Sven Koenig		
■ Develop parallel algorithms for Anytime Multi-Agent Path Finding.		
Enhancements on Priority-Based Search for Near-Optimal Multi-Agent Path Finding	Spring	2022
Supervised by Prof. Roni Stern, Ariel Felner, and Sven Koenig		
Speeding up techniques in solving Multi-Agent Path Finding with near-optimal solutions.		
Nested Framework and Flex Distribution for Bounded-Suboptimal Multi-Agent Path Finding	Spring	2020
Supervised by Prof. Sven Koenig		
 Nested structure for ECBS-related algorithms with heuristics. 		
Hierarchical Multi-Agent Path Finding	Fall	2020
Supervised by Prof. Sven Koenig		
■ Develop a hierarchical solver for multi-agent path finding.		• • • • •
Simple Temporal Network with Uncertainty for Multi-Agent Path Finding	Fall	2019
Supervised by Prof. Sven Koenig		
■ Developed a decentralized scheduling system to handle uncertainty in MAPF.	C	2010
Optimal Navigation System for a Mobile Robot to Execute Dynamical Multiple Social Tasks	Spring	2019
Master Thesis – advisor: Dr. Li-Chen Fu (Best Master Thesis Award of the year) ■ Developed social service robot system integrating visual and audio perception, task and motion		
planning, and human robot interaction.		
Social Friendly Navigation based on Multi-Layer Environmental Affordance Map	Fall	2018
Supervised by Prof. Li-Chen Fu	ran	2010
■ Developed scene recognition and human action recognition system with over 90% accuracy.		
Real-time Obstacle Avoidance using Supervised Recurrent Neural Network with Automatic	Spring	2018
Data Collection and Labeling	~F8	
Supervised by Prof. Li-Chen Fu		
■ Developed an obstacle avoidance algorithm using unsupervised recurrent neural network (RNN) techniques with relative distance error less than 7%.		
Robust 2D Indoor Localization through Laser SLAM and Visual SLAM Fusion	Spring	2018
Supervised by Prof. Li-Chen Fu	. 6	
■ Be selected as SMC 2018 Best Student Paper Award Finalist (Top 5 among all papers).		
■ Proposed a novel SLAM fusion process to achieve robust localization with relative distance error less than 5%.		
PROGRAMMING SKILLS		
Operating System: ROS, Linux, Naoqi, Windows Programming Language: Python, C++,	C#	

Operating System: ROS, Linux, Naoqi, Windows Programming Language: Python, C Software: Gazebo, Android Studio, MATLAB, Laker Layout, Verilog, HSPICE, PSPICE, Labview

- Robots: Pioneer 3DX Robot, Self-build Omni-directional wheel, Pepper Robot, Baxter Robot, Universal Robot UR5
- Embedded System: Nvidia Tegra TX2, Arduino